Home
Class 12
MATHS
Derivative of cos x^3 sin ^2(x^5) with r...

Derivative of `cos x^3 sin ^2(x^5)` with respect to x is :

A

`10x^4("sin"x^5) (cos x^5)(cos x^3)-3x^2 sin x^2 sin^2 x^5`

B

`5x^3(sinx^5)(cos x^5) (cos x^3) -3x^2 sin x^3 sin^2 x^5`

C

`5x^3("sin"x^5)(cos x^5)(cos x^3)-6x^2 sin x^3 sin^2 x^5`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of \( y = \cos(x^3) \sin^2(x^5) \) with respect to \( x \), we will use the product rule and the chain rule. ### Step-by-Step Solution: 1. **Identify the Functions**: Let \( u = \cos(x^3) \) and \( v = \sin^2(x^5) \). We need to find \( \frac{dy}{dx} \) where \( y = u \cdot v \). 2. **Apply the Product Rule**: The product rule states that \( \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \). 3. **Differentiate \( u \)**: To differentiate \( u = \cos(x^3) \), we apply the chain rule: \[ \frac{du}{dx} = -\sin(x^3) \cdot \frac{d}{dx}(x^3) = -\sin(x^3) \cdot 3x^2 \] Thus, \( \frac{du}{dx} = -3x^2 \sin(x^3) \). 4. **Differentiate \( v \)**: To differentiate \( v = \sin^2(x^5) \), we again apply the chain rule: \[ \frac{dv}{dx} = 2\sin(x^5) \cdot \frac{d}{dx}(\sin(x^5)) = 2\sin(x^5) \cdot \cos(x^5) \cdot \frac{d}{dx}(x^5) = 2\sin(x^5) \cdot \cos(x^5) \cdot 5x^4 \] Thus, \( \frac{dv}{dx} = 10x^4 \sin(x^5) \cos(x^5) \). 5. **Combine Using the Product Rule**: Substitute \( u \), \( v \), \( \frac{du}{dx} \), and \( \frac{dv}{dx} \) into the product rule: \[ \frac{dy}{dx} = \cos(x^3) \cdot (10x^4 \sin(x^5) \cos(x^5)) + \sin^2(x^5) \cdot (-3x^2 \sin(x^3)) \] 6. **Simplify the Expression**: Combine the terms: \[ \frac{dy}{dx} = 10x^4 \cos(x^3) \sin(x^5) \cos(x^5) - 3x^2 \sin^2(x^5) \sin(x^3) \] Thus, the derivative of \( \cos(x^3) \sin^2(x^5) \) with respect to \( x \) is: \[ \frac{dy}{dx} = 10x^4 \cos(x^3) \sin(x^5) \cos(x^5) - 3x^2 \sin^2(x^5) \sin(x^3) \]
Promotional Banner