Home
Class 12
MATHS
If [1 x] [(2,-1),(1,2)][(1),(3)]=[0], th...

If `[1 x] [(2,-1),(1,2)][(1),(3)]=[0]`, then x=

A

`2/7`

B

`1/7`

C

`5/7`

D

`3/7`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \([1 \, x] \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} = [0]\), we will follow these steps: ### Step 1: Matrix Multiplication First, we need to multiply the first two matrices \([1 \, x]\) and \(\begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix}\). The resulting matrix will be: \[ [1 \cdot 2 + x \cdot 1 \quad 1 \cdot -1 + x \cdot 2] = [2 + x \quad -1 + 2x] \] ### Step 2: Multiply by the Third Matrix Next, we multiply the result by the third matrix \(\begin{pmatrix} 1 \\ 3 \end{pmatrix}\). Using the row-column multiplication: \[ (2 + x) \cdot 1 + (-1 + 2x) \cdot 3 \] This simplifies to: \[ 2 + x - 3 + 6x = 7x - 1 \] ### Step 3: Set the Equation to Zero According to the problem, this result equals \([0]\): \[ 7x - 1 = 0 \] ### Step 4: Solve for x Now, we solve for \(x\): \[ 7x = 1 \implies x = \frac{1}{7} \] ### Final Answer Thus, the value of \(x\) is: \[ \boxed{\frac{1}{7}} \] ---
Promotional Banner