Home
Class 12
MATHS
If y=cot^(-1)((a+x)/(1-ax)), then (dy)/(...

If `y=cot^(-1)((a+x)/(1-ax))`, then `(dy)/(dx)`:

A

`1/(1+x^2)`

B

`(-1)/(1+x^2)`

C

`(x^2)/(1+x)`

D

`(1+x)/(x^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative of the function \( y = \cot^{-1}\left(\frac{a+x}{1-ax}\right) \). ### Step-by-Step Solution: 1. **Rewrite the Function**: We can use the identity \( \cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right) \). Thus, we can rewrite \( y \) as: \[ y = \tan^{-1}\left(\frac{1}{\frac{a+x}{1-ax}}\right) = \tan^{-1}\left(\frac{1-ax}{a+x}\right) \] **Hint**: Use the identity \( \cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right) \) to rewrite the function. 2. **Differentiate Using the Chain Rule**: To differentiate \( y \) with respect to \( x \), we apply the derivative of \( \tan^{-1}(u) \), which is \( \frac{1}{1+u^2} \cdot \frac{du}{dx} \). Here, \( u = \frac{1-ax}{a+x} \). First, we need to find \( \frac{du}{dx} \): \[ u = \frac{1-ax}{a+x} \] Using the quotient rule: \[ \frac{du}{dx} = \frac{(a+x)(-a) - (1-ax)(1)}{(a+x)^2} \] **Hint**: Use the quotient rule \( \frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} \). 3. **Simplify \( \frac{du}{dx} \)**: Simplifying the numerator: \[ = \frac{-a(a+x) - (1-ax)}{(a+x)^2} = \frac{-a^2 - ax - 1 + ax}{(a+x)^2} = \frac{-a^2 - 1}{(a+x)^2} \] **Hint**: Combine like terms carefully when simplifying. 4. **Substitute Back into the Derivative**: Now substituting \( u \) and \( \frac{du}{dx} \) back into the derivative of \( y \): \[ \frac{dy}{dx} = \frac{1}{1 + \left(\frac{1-ax}{a+x}\right)^2} \cdot \frac{-a^2 - 1}{(a+x)^2} \] 5. **Simplify the Expression**: To simplify \( 1 + \left(\frac{1-ax}{a+x}\right)^2 \): \[ = 1 + \frac{(1-ax)^2}{(a+x)^2} = \frac{(a+x)^2 + (1-ax)^2}{(a+x)^2} \] Now we need to compute \( (a+x)^2 + (1-ax)^2 \): \[ = a^2 + 2ax + x^2 + 1 - 2ax + a^2x^2 = a^2 + x^2 + 1 + a^2x^2 \] **Hint**: Combine the terms in the numerator carefully. 6. **Final Derivative**: Therefore, the derivative becomes: \[ \frac{dy}{dx} = \frac{-a^2 - 1}{(a+x)^2} \cdot \frac{(a+x)^2}{a^2 + x^2 + 1 + a^2x^2} \] Simplifying gives: \[ \frac{dy}{dx} = \frac{-a^2 - 1}{a^2 + x^2 + 1 + a^2x^2} \] ### Final Answer: \[ \frac{dy}{dx} = \frac{-a^2 - 1}{a^2 + x^2 + 1 + a^2x^2} \]
Promotional Banner