Home
Class 12
MATHS
If siny=x sin (a+y), then(dy)/(dx) is eq...

If `siny=x sin (a+y)`, then`(dy)/(dx)` is equal to :

A

`(sin a)/(sin^2 (a+y))`

B

`(sin^2(a+y))/(sin a )`

C

`sin a sin^2 (a+y)`

D

`(sin^2(a-y))/(sina)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin y = x \sin(a + y) \) and find \( \frac{dy}{dx} \), we can follow these steps: ### Step 1: Differentiate both sides with respect to \( x \) We start with the equation: \[ \sin y = x \sin(a + y) \] Now, we differentiate both sides with respect to \( x \): \[ \frac{d}{dx}(\sin y) = \frac{d}{dx}(x \sin(a + y)) \] ### Step 2: Apply the chain rule on the left side Using the chain rule on the left side: \[ \cos y \frac{dy}{dx} = \sin(a + y) + x \cos(a + y) \frac{dy}{dx} \] ### Step 3: Rearrange the equation Now, we can rearrange the equation to isolate \( \frac{dy}{dx} \): \[ \cos y \frac{dy}{dx} - x \cos(a + y) \frac{dy}{dx} = \sin(a + y) \] Factoring out \( \frac{dy}{dx} \): \[ \left(\cos y - x \cos(a + y)\right) \frac{dy}{dx} = \sin(a + y) \] ### Step 4: Solve for \( \frac{dy}{dx} \) Now, we can solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{\sin(a + y)}{\cos y - x \cos(a + y)} \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = \frac{\sin(a + y)}{\cos y - x \cos(a + y)} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If y = x tan y , then (dy)/(dx) is equal to

If y = sqrt(sin + y ) "then" (dy)/(dx) is equal to

If 2y=sin^-1(x+5y),then,(dy)/(dx) is equal to

If y^y=x sin y , then (dy)/(dx) =

If y + sin y = cos x, then (dy)/(dx) is equal to

If y=e^(tan x(ln sin x)) then (dy)/(dx) is equal to

y=x^(x sin x) then (dy)/(dx)

If y=[sin x]^(y) then (dy)/(dx)