Home
Class 12
MATHS
If x=[(3,1,1),(5,2,3)] and y=[(2,1,1),(7...

If `x=[(3,1,1),(5,2,3)]` and `y=[(2,1,1),(7,2,4)]`, what is matrix z, such that x+y+z=0

A

`[(-5,-2,-2),(-12,-4,-7)]`

B

`[(-2,-1,-1),(-7,-2,-4)]`

C

`[(-3,-1,-1),(-5,-2,-3)]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the matrix \( z \) such that \( x + y + z = 0 \), we will follow these steps: ### Step 1: Define the matrices Let: \[ x = \begin{pmatrix} 3 & 1 & 1 \\ 5 & 2 & 3 \end{pmatrix}, \quad y = \begin{pmatrix} 2 & 1 & 1 \\ 7 & 2 & 4 \end{pmatrix} \] ### Step 2: Add matrices \( x \) and \( y \) We will add the corresponding elements of matrices \( x \) and \( y \): \[ x + y = \begin{pmatrix} 3 + 2 & 1 + 1 & 1 + 1 \\ 5 + 7 & 2 + 2 & 3 + 4 \end{pmatrix} \] Calculating each element: - First row: \( 3 + 2 = 5 \), \( 1 + 1 = 2 \), \( 1 + 1 = 2 \) - Second row: \( 5 + 7 = 12 \), \( 2 + 2 = 4 \), \( 3 + 4 = 7 \) Thus, we have: \[ x + y = \begin{pmatrix} 5 & 2 & 2 \\ 12 & 4 & 7 \end{pmatrix} \] ### Step 3: Set up the equation for \( z \) From the equation \( x + y + z = 0 \), we can express \( z \) as: \[ z = - (x + y) \] ### Step 4: Calculate matrix \( z \) Now we substitute \( x + y \) into the equation: \[ z = - \begin{pmatrix} 5 & 2 & 2 \\ 12 & 4 & 7 \end{pmatrix} \] This means we will multiply each element of the matrix by -1: \[ z = \begin{pmatrix} -5 & -2 & -2 \\ -12 & -4 & -7 \end{pmatrix} \] ### Final Answer The matrix \( z \) is: \[ z = \begin{pmatrix} -5 & -2 & -2 \\ -12 & -4 & -7 \end{pmatrix} \] ---
Promotional Banner