Home
Class 12
MATHS
Find (dy)/(dx) if y=8x^6-4x^3....

Find `(dy)/(dx)` if `y=8x^6-4x^3`.

A

`24x^5-8x^2`

B

`48x^5-12x^2`

C

`4x^5-x^2`

D

`3x^5 -2x^2`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = 8x^6 - 4x^3\), we will use the power rule of differentiation. The power rule states that if \(y = x^n\), then \(\frac{dy}{dx} = n \cdot x^{n-1}\). ### Step-by-step solution: 1. **Identify the function**: \[ y = 8x^6 - 4x^3 \] 2. **Differentiate each term separately**: - For the first term \(8x^6\): - Using the power rule: \[ \frac{d}{dx}(8x^6) = 8 \cdot 6x^{6-1} = 48x^5 \] - For the second term \(-4x^3\): - Again using the power rule: \[ \frac{d}{dx}(-4x^3) = -4 \cdot 3x^{3-1} = -12x^2 \] 3. **Combine the derivatives**: \[ \frac{dy}{dx} = 48x^5 - 12x^2 \] ### Final Answer: \[ \frac{dy}{dx} = 48x^5 - 12x^2 \]
Promotional Banner