Home
Class 12
MATHS
If y=(3x^2-9x+5)^2 then (dy)/(dx)=...

If `y=(3x^2-9x+5)^2` then `(dy)/(dx)`=

A

`2(3x^2 9x+5)(6x-5)`

B

`2(3x^2 -9x+5)`

C

`3(3x^2 -9x+5)`

D

`6(3x^2- 9x+5)(2x-3)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = (3x^2 - 9x + 5)^2 \), we will use the chain rule of differentiation. Here’s the step-by-step solution: ### Step 1: Identify the outer and inner functions Let \( u = 3x^2 - 9x + 5 \). Then, we can rewrite \( y \) as: \[ y = u^2 \] ### Step 2: Differentiate the outer function Using the chain rule, the derivative of \( y \) with respect to \( x \) is given by: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \] First, we differentiate the outer function \( y = u^2 \): \[ \frac{dy}{du} = 2u \] ### Step 3: Differentiate the inner function Now, we need to find \( \frac{du}{dx} \): \[ u = 3x^2 - 9x + 5 \] Differentiating \( u \) with respect to \( x \): \[ \frac{du}{dx} = 6x - 9 \] ### Step 4: Combine the derivatives Now we can substitute \( u \) back into our derivative: \[ \frac{dy}{dx} = 2u \cdot \frac{du}{dx} = 2(3x^2 - 9x + 5)(6x - 9) \] ### Step 5: Final expression Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = 2(3x^2 - 9x + 5)(6x - 9) \] ### Summary The final answer is: \[ \frac{dy}{dx} = 2(3x^2 - 9x + 5)(6x - 9) \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If y= e^(5x^(2) -x+3) ,then (dy)/(dx) =

If y= sin (x^(2) +5) , then (dy)/(dx) =

If y=5^(x^(2)-2), then (dy)/(dx)=

If y=e^(3x+2) ,then (dy)/(dx) is

If y=(e)^(2x+5) , then (dy)/(dx) is………..

If x^(2)y^(2)=(x+y)^(5) then (dy)/(dx)=

If y^(3) - 3y^(2) x=x^(3) +3x^(2) y,then (dy)/(dx)=

If y=[3x+2][2x-1] , then find (dy)/(dx) .

If y=3sqrt((3x-1)/( (2x+3)(5-x) ^(2))),then (dy)/(dx)=

If y=(2x+3)^((3x-5)) , find (dy)/(dx) .