Home
Class 12
MATHS
If tan (sec^(-1)x) =sin (cos^(-1) (1/sqr...

If `tan (sec^(-1)x) =sin (cos^(-1) (1/sqrt5))`, then x is equal to :

A

`+- 3/(sqrt5)`

B

`+- (sqrt5)/3`

C

` +- (sqrt3)/5`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan(\sec^{-1} x) = \sin(\cos^{-1} (1/\sqrt{5})) \), we will follow these steps: ### Step 1: Simplify the Left Side We start with the left side of the equation: \[ \tan(\sec^{-1} x) \] Using the identity \( \tan(\sec^{-1} x) = \sqrt{x^2 - 1} / x \), we can rewrite this as: \[ \tan(\sec^{-1} x) = \frac{\sqrt{x^2 - 1}}{x} \] ### Step 2: Simplify the Right Side Now, we simplify the right side: \[ \sin(\cos^{-1}(1/\sqrt{5})) \] Using the identity \( \sin(\cos^{-1} \theta) = \sqrt{1 - \theta^2} \), we have: \[ \sin(\cos^{-1}(1/\sqrt{5})) = \sqrt{1 - (1/\sqrt{5})^2} = \sqrt{1 - \frac{1}{5}} = \sqrt{\frac{4}{5}} = \frac{2}{\sqrt{5}} \] ### Step 3: Set the Two Sides Equal Now we set the two sides equal: \[ \frac{\sqrt{x^2 - 1}}{x} = \frac{2}{\sqrt{5}} \] ### Step 4: Cross Multiply Cross multiplying gives us: \[ \sqrt{x^2 - 1} \cdot \sqrt{5} = 2x \] ### Step 5: Square Both Sides Squaring both sides to eliminate the square root: \[ 5(x^2 - 1) = 4x^2 \] ### Step 6: Rearrange the Equation Rearranging the equation gives: \[ 5x^2 - 5 = 4x^2 \] \[ 5x^2 - 4x^2 - 5 = 0 \] \[ x^2 - 5 = 0 \] ### Step 7: Solve for \( x^2 \) This simplifies to: \[ x^2 = 5 \] ### Step 8: Take the Square Root Taking the square root of both sides gives: \[ x = \pm \sqrt{5} \] ### Conclusion Since \( x \) represents the secant function's input, we only consider the positive value: \[ x = \sqrt{5} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan(cos^(-1)x)=sin(cot^(-1)1/2) then x is equal to- a.1/sqrt(5)b.2/sqrt(5)c.3/sqrt(5)d.sqrt(5)/3

tan (sec ^ (- 1) x) = sin (cos ^ (- 1) ((1) / (sqrt (5))))

if tan^(-1)(1/x)+cos^(-1)(2/sqrt5)=pi/4 then x equals

If cos (sin^(-1)(2/sqrt(5)) + cos^(-1)x) = 0, then x is equal to A) 1/sqrt(5) B) (-2/sqrt(5)) C) (2/sqrt(5)) D) 1

The value of tan(sin^(-1)(cos(sin^(-1)x)))tan(cos^(-1)(sin(cos^(-1)x))), where x in(0,1) is equal to 0(b)1(c)-1(d) none of these

If cot(cos^(-1)x)=sec{tan^(-1)((a)/sqrt(b^(2)-a^(2)))} then x equals

tan^(-1)[(cos x)/(1+sin x)] is equal to