Home
Class 12
MATHS
The differential coefficient of the func...

The differential coefficient of the function `cot^3 2x` is

A

`-6 cot^2 2x * cosec^2 2x`

B

`-3 cot^2 2x * cosec^2 2x`

C

`-6 cot^2 2x * cosec 2x`

D

`-3 cot^2 2x * cosec 2x`

Text Solution

AI Generated Solution

The correct Answer is:
To find the differential coefficient of the function \( y = \cot^3(2x) \), we will use the chain rule and the derivative of the cotangent function. ### Step-by-Step Solution: 1. **Identify the function**: \[ y = \cot^3(2x) \] Here, we have an outer function \( u^3 \) where \( u = \cot(2x) \). 2. **Differentiate the outer function**: Using the chain rule, the derivative of \( u^3 \) with respect to \( u \) is: \[ \frac{dy}{du} = 3u^2 \] 3. **Differentiate the inner function**: Now we need to differentiate \( u = \cot(2x) \) with respect to \( x \). The derivative of \( \cot(v) \) is \( -\csc^2(v) \cdot \frac{dv}{dx} \). Here, \( v = 2x \), so: \[ \frac{du}{dx} = -\csc^2(2x) \cdot \frac{d(2x)}{dx} = -\csc^2(2x) \cdot 2 = -2\csc^2(2x) \] 4. **Apply the chain rule**: Now, we can combine these results using the chain rule: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = 3(\cot(2x))^2 \cdot (-2\csc^2(2x)) \] 5. **Simplify the expression**: \[ \frac{dy}{dx} = -6(\cot(2x))^2 \csc^2(2x) \] ### Final Answer: The differential coefficient of the function \( \cot^3(2x) \) is: \[ \frac{dy}{dx} = -6(\cot(2x))^2 \csc^2(2x) \]
Promotional Banner