Home
Class 12
MATHS
If y=(1+x)(1+x^2)(1+x^4), then (dy)/(dx)...

If `y=(1+x)(1+x^2)(1+x^4)`, then` (dy)/(dx)` at x =1 is :

A

20

B

28

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) at \(x = 1\) for the function \(y = (1+x)(1+x^2)(1+x^4)\), we will use the product rule for differentiation. ### Step-by-Step Solution 1. **Identify the function**: \[ y = (1+x)(1+x^2)(1+x^4) \] 2. **Apply the product rule**: The product rule states that if \(y = u \cdot v \cdot w\), then: \[ \frac{dy}{dx} = u'vw + uv'w + uvw' \] where \(u = (1+x)\), \(v = (1+x^2)\), and \(w = (1+x^4)\). 3. **Differentiate each function**: - \(u' = \frac{d}{dx}(1+x) = 1\) - \(v' = \frac{d}{dx}(1+x^2) = 2x\) - \(w' = \frac{d}{dx}(1+x^4) = 4x^3\) 4. **Substitute into the product rule**: \[ \frac{dy}{dx} = (1)(1+x^2)(1+x^4) + (1+x)(2x)(1+x^4) + (1+x)(1+x^2)(4x^3) \] 5. **Simplify each term**: - First term: \[ (1)(1+x^2)(1+x^4) = (1+x^2)(1+x^4) = 1 + x^4 + x^2 + x^6 \] - Second term: \[ (1+x)(2x)(1+x^4) = 2x(1+x)(1+x^4) = 2x(1 + x + x^4 + x^5) = 2x + 2x^2 + 2x^5 + 2x^6 \] - Third term: \[ (1+x)(1+x^2)(4x^3) = 4x^3(1+x)(1+x^2) = 4x^3(1 + x + x^2 + x^3) = 4x^3 + 4x^4 + 4x^5 + 4x^6 \] 6. **Combine all terms**: \[ \frac{dy}{dx} = (1 + x^4 + x^2 + x^6) + (2x + 2x^2 + 2x^5 + 2x^6) + (4x^3 + 4x^4 + 4x^5 + 4x^6) \] Combine like terms: \[ = 1 + 2x + 5x^2 + 8x^3 + 7x^4 + 6x^5 + 5x^6 \] 7. **Evaluate at \(x = 1\)**: \[ \frac{dy}{dx} \bigg|_{x=1} = 1 + 2(1) + 5(1) + 8(1) + 7(1) + 6(1) + 5(1) = 1 + 2 + 5 + 8 + 7 + 6 + 5 = 34 \] ### Final Answer: \[ \frac{dy}{dx} \text{ at } x = 1 \text{ is } 34. \]
Promotional Banner