Home
Class 12
MATHS
The corner points of the feasible region...

The corner points of the feasible region determined by the system of linear constraints are (0, 10), (5, 5) (15, 15), (0, 20). Let Z = px + qy , where `p,q gt 0`. Then, the condition on p and q so that the maximum of Z occurs at both the points (15, 15) and (0, 20), is

A

p=q

B

p=2q

C

q=2p

D

q=3p

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The corner points of the feasible region determined by the system of linear constraints are (0,10) , (5,5) (25,20),(0,30) Let z = px + qy , where p,qgt0 Condition on p and q so that te maximum of z occurs at both the points (25,20 ) and (0,30) is ………

Corner poins of the feasible region determned by the system of linear constrainsts are (0,3), (1,1), and (3,0). Let Z=px+qy. Where p, q lt 0 Condition on p and q, so that the minimum of Z occurs at (3,0) and (1,1) is

The corner points of the feasible region determined by the following system of linear inequalities: 2x+yge10, x+3yle15,x,yge0 are (0,0),(5,0),(3,4) and (0,5) . Let Z=px+qy , where p,qge0 . Condition on p and q so that the maximum of Z occurs at both (3,4) and (0,5) is: (a) p=q (b) p=2q (c) p=eq (d) q=3p

For an objective function Z = ax + by," where "a,b gt 0, the corner points of the feasible region determined by a set of constraints (linear inequalities) are (0, 20), (10, 10), (30, 30) and (0, 40). The condition on a and b such that the maximum Z occurs at both the points (30, 30) and (0, 40) is:

For an objective function Z = ax + by, where a, bgt0 , the corner points of the feasible region determined by a set of constraints (linear inequalities) are (0, 20). (10, 10), (30, 30) and (0, 40). The condition on a and b such that the maximum z occurs at both the points (30, 30) and (0, 40) is:

The corner points of the feasible region determined by the system of linear constraints are as shown below: Let Z=px +qy where p,q gt 0 be the objective function. Find the condition on p and q so that the maximum value of Z occurs at B ( 4,10 ) and C (6,8 ) Also mention the number of optimal solutions in this case.

The corner points of the feasible region determined by the system of linear contraints are (0,0), (0,40),( 20,40),(60,20),(60,0). The objective function is Z=4x+3y. Compare the quantity in Column A and Column B.

The corner points of the feasible region of the system of linear inequations x+yge2,x+yle5,x-yge0,x,yge0 are :

The corner points of a feasible region determined by a system of linear inequations are (0, 0), (4,0), (5,2), (2, 2) and (0, 1). If the objective function is Z = x + y, then maximum of Z occurs at:

The corner points of the feasible region of a system of linear inequations are (0, 0), (5, 0), (6,5), (6, 8), (4, 10) and (0,8). If Z = 3x - 4y, then the minimum value of Z occurs at: