Home
Class 12
MATHS
The value of the expression sin[cot^(-1)...

The value of the expression `sin[cot^(-1)1)}]` is

A

`1/sqrt2`

B

`sqrt(3/2)`

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \( \sin(\cot^{-1}(1)) \), we can follow these steps: ### Step 1: Understand the Inverse Cotangent Let \( \theta = \cot^{-1}(1) \). This means that \( \cot(\theta) = 1 \). **Hint**: Recall that \( \cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)} \). ### Step 2: Determine the Angle The cotangent of an angle is 1 when the angle is \( \frac{\pi}{4} \) radians (or 45 degrees). Therefore, we have: \[ \theta = \frac{\pi}{4} \] **Hint**: Remember that \( \cot(\frac{\pi}{4}) = 1 \). ### Step 3: Find the Sine of the Angle Now, we need to find \( \sin(\theta) \): \[ \sin(\theta) = \sin\left(\frac{\pi}{4}\right) \] **Hint**: Recall the sine value for common angles. ### Step 4: Calculate the Sine Value The sine of \( \frac{\pi}{4} \) is: \[ \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] **Hint**: Use the unit circle or the properties of a 45-45-90 triangle to find this value. ### Step 5: Conclusion Thus, the value of the expression \( \sin(\cot^{-1}(1)) \) is: \[ \sin(\cot^{-1}(1)) = \frac{1}{\sqrt{2}} \] **Final Answer**: \( \frac{1}{\sqrt{2}} \)
Promotional Banner