Home
Class 12
MATHS
Find (dy)/(dx), if y =sin^3x cos x....

Find `(dy)/(dx)`, if `y =sin^3x cos x`.

A

`"sin"^2x(3 cos^2x-sin^2x)`

B

`3 cos^3 x(1-sin^2x)`

C

`3 cos^4 x`

D

`3"sin"^4 x`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = \sin^3 x \cos x\), we will use the product rule of differentiation. The product rule states that if you have two functions \(u\) and \(v\), then the derivative of their product is given by: \[ \frac{d(uv)}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \] ### Step-by-Step Solution: 1. **Identify the functions**: Let \(u = \sin^3 x\) and \(v = \cos x\). 2. **Differentiate \(u\)**: We need to find \(\frac{du}{dx}\). Using the chain rule: \[ u = \sin^3 x \implies \frac{du}{dx} = 3 \sin^2 x \cdot \frac{d}{dx}(\sin x) = 3 \sin^2 x \cos x \] 3. **Differentiate \(v\)**: Now, differentiate \(v\): \[ v = \cos x \implies \frac{dv}{dx} = -\sin x \] 4. **Apply the product rule**: Now, apply the product rule: \[ \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \] Substituting the values we found: \[ \frac{dy}{dx} = \sin^3 x (-\sin x) + \cos x (3 \sin^2 x \cos x) \] 5. **Simplify the expression**: Simplifying the expression: \[ \frac{dy}{dx} = -\sin^4 x + 3 \sin^2 x \cos^2 x \] We can factor out \(\sin^2 x\): \[ \frac{dy}{dx} = \sin^2 x (3 \cos^2 x - \sin^2 x) \] ### Final Answer: Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \sin^2 x (3 \cos^2 x - \sin^2 x) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

FInd (dy)/(dx) of y=sin^3x

Find (dy)/(dx) if y=(sin(x+a))/(cos x)

Find (dy)/(dx) if y+ sin y= cos x

Find (dy)/(dx) If sin^2 x +cos^2 y=1

Find (dy)/(dx) of y+sin y=cos x

Find (dy)/(dx) when 2x+3y=sin x

find(dy)/(dx) of y^(y)=sin x

Find (dy)/(dx),quad y=(sin x)^(cos x)+(cos x)^(sin x)

Find (dy)/(dx) if,sin xy+cos(x+y)=1