Home
Class 12
MATHS
The value of cos^(-1)(cos 5pi/3)+sin^(-1...

The value of `cos^(-1)(cos 5pi/3)+sin^(-1) ("sin" (5pi)/3)` is :

A

`pi/2`

B

`(5pi)/3`

C

`(10pi)/3`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos^{-1}(\cos(5\pi/3)) + \sin^{-1}(\sin(5\pi/3)) \), we will break it down step by step. ### Step 1: Simplify \( \sin^{-1}(\sin(5\pi/3)) \) First, we need to find the value of \( 5\pi/3 \) in terms of a standard angle. - \( 5\pi/3 \) is equivalent to \( 2\pi - \pi/3 \), which means it lies in the fourth quadrant. In the fourth quadrant, the sine function is negative. Therefore, we can express: \[ \sin(5\pi/3) = \sin(2\pi - \pi/3) = -\sin(\pi/3) \] Since \( \sin(\pi/3) = \frac{\sqrt{3}}{2} \), we have: \[ \sin(5\pi/3) = -\frac{\sqrt{3}}{2} \] Now, substituting this into the inverse sine function: \[ \sin^{-1}(\sin(5\pi/3)) = \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) \] The principal value of \( \sin^{-1}(x) \) is in the range \([- \frac{\pi}{2}, \frac{\pi}{2}]\). Therefore, \[ \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) = -\frac{\pi}{3} \] ### Step 2: Simplify \( \cos^{-1}(\cos(5\pi/3)) \) Next, we simplify \( \cos^{-1}(\cos(5\pi/3)) \). - Again, since \( 5\pi/3 = 2\pi - \pi/3 \), we can write: \[ \cos(5\pi/3) = \cos(2\pi - \pi/3) = \cos(\pi/3) \] Since \( \cos(\pi/3) = \frac{1}{2} \), we have: \[ \cos(5\pi/3) = \frac{1}{2} \] Now, substituting this into the inverse cosine function: \[ \cos^{-1}(\cos(5\pi/3)) = \cos^{-1}\left(\frac{1}{2}\right) \] The principal value of \( \cos^{-1}(x) \) is in the range \([0, \pi]\). Therefore, \[ \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} \] ### Step 3: Combine the Results Now we can combine the results from Steps 1 and 2: \[ \cos^{-1}(\cos(5\pi/3)) + \sin^{-1}(\sin(5\pi/3)) = \frac{\pi}{3} + \left(-\frac{\pi}{3}\right) \] This simplifies to: \[ \frac{\pi}{3} - \frac{\pi}{3} = 0 \] ### Final Answer Thus, the value of \( \cos^{-1}(\cos(5\pi/3)) + \sin^{-1}(\sin(5\pi/3)) \) is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The principal value of cos^(-1)(cos 2pi/3)+ sin^(-1) sin(2pi/3) is

What is the value of cos^(-1)(cos(2pi)/3)+sin^(-1)(sin(2pi)/3) ?

Find the value of cos^(-1) ( cos . (2pi)/3) + sin^(-1) ( sin . (2pi)/3) .

Write the principal value of cos^(-1)(cos(2 pi)/(3))+sin^(-1)(sin(2 pi)/(3))

The value of cos^(-1)(cos((pi)/(2)))+cos^(-1)(sin((2pi)/(3))) is

cos^(-1)(cos(5 pi/(3))+sin^(-1)(cos(5 pi/(3))=

cos^(-1)(cos((5 pi)/(3)))+sin^(-1)(sin((5 pi)/(3)))=