Home
Class 12
MATHS
If A=[a(ij)](4xx3), where a(ij) =(i-j)/(...

If `A=[a_(ij)]_(4xx3)`, where `a_(ij) =(i-j)/(i+j)`, then find A.

A

`[(0,(-1)//3,(-1)//2),(1//2,0,1//5),(1//3,1//5,0),(3//5,1//3,1//7)]`

B

`[(0,(-1)//3,(-1)//2),(1//3,0,(-1)//5),(1//2,1//5,0),(3//5,1//3,1//7)]`

C

`[(0,-3,(-1)//2),(2,0,5),(3,5,0),(3//5,3,7)]`

D

`[(0,1//3,1//2),((-1)//3,0,1//5),(-1//2,-1//5,0),((-3)//5,(-1)//3,(-1)//7)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the matrix \( A = [a_{ij}]_{4 \times 3} \) where \( a_{ij} = \frac{i - j}{i + j} \), we will calculate each element of the matrix based on the given formula. The matrix \( A \) will have 4 rows and 3 columns. ### Step 1: Define the dimensions of the matrix The matrix \( A \) is a \( 4 \times 3 \) matrix, meaning it has 4 rows (i = 1, 2, 3, 4) and 3 columns (j = 1, 2, 3). ### Step 2: Calculate each element of the matrix We will calculate \( a_{ij} \) for each combination of \( i \) and \( j \). - For \( i = 1 \): - \( j = 1: a_{11} = \frac{1 - 1}{1 + 1} = \frac{0}{2} = 0 \) - \( j = 2: a_{12} = \frac{1 - 2}{1 + 2} = \frac{-1}{3} \) - \( j = 3: a_{13} = \frac{1 - 3}{1 + 3} = \frac{-2}{4} = -\frac{1}{2} \) - For \( i = 2 \): - \( j = 1: a_{21} = \frac{2 - 1}{2 + 1} = \frac{1}{3} \) - \( j = 2: a_{22} = \frac{2 - 2}{2 + 2} = \frac{0}{4} = 0 \) - \( j = 3: a_{23} = \frac{2 - 3}{2 + 3} = \frac{-1}{5} \) - For \( i = 3 \): - \( j = 1: a_{31} = \frac{3 - 1}{3 + 1} = \frac{2}{4} = \frac{1}{2} \) - \( j = 2: a_{32} = \frac{3 - 2}{3 + 2} = \frac{1}{5} \) - \( j = 3: a_{33} = \frac{3 - 3}{3 + 3} = \frac{0}{6} = 0 \) - For \( i = 4 \): - \( j = 1: a_{41} = \frac{4 - 1}{4 + 1} = \frac{3}{5} \) - \( j = 2: a_{42} = \frac{4 - 2}{4 + 2} = \frac{2}{6} = \frac{1}{3} \) - \( j = 3: a_{43} = \frac{4 - 3}{4 + 3} = \frac{1}{7} \) ### Step 3: Construct the matrix Now we can construct the matrix \( A \) using the calculated elements: \[ A = \begin{bmatrix} 0 & -\frac{1}{3} & -\frac{1}{2} \\ \frac{1}{3} & 0 & -\frac{1}{5} \\ \frac{1}{2} & \frac{1}{5} & 0 \\ \frac{3}{5} & \frac{1}{3} & \frac{1}{7} \end{bmatrix} \] ### Final Answer The matrix \( A \) is: \[ A = \begin{bmatrix} 0 & -\frac{1}{3} & -\frac{1}{2} \\ \frac{1}{3} & 0 & -\frac{1}{5} \\ \frac{1}{2} & \frac{1}{5} & 0 \\ \frac{3}{5} & \frac{1}{3} & \frac{1}{7} \end{bmatrix} \]
Promotional Banner