Home
Class 12
MATHS
Find the area of the triangle with verti...

Find the area of the triangle with vertices `P(4,5),Q(4,-2) and R(-6,2).

A

21 sq. units

B

35 sq, units

C

20 sq. units

D

40 sq. units

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the triangle with vertices \( P(4,5) \), \( Q(4,-2) \), and \( R(-6,2) \), we can use the formula for the area of a triangle given by the coordinates of its vertices: \[ \text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| \] Where: - \( (x_1, y_1) = (4, 5) \) for point \( P \) - \( (x_2, y_2) = (4, -2) \) for point \( Q \) - \( (x_3, y_3) = (-6, 2) \) for point \( R \) ### Step 1: Substitute the coordinates into the formula Substituting the coordinates into the area formula: \[ \text{Area} = \frac{1}{2} \left| 4((-2) - 2) + 4(2 - 5) + (-6)(5 - (-2)) \right| \] ### Step 2: Simplify the expression Calculating each term: 1. \( 4((-2) - 2) = 4(-4) = -16 \) 2. \( 4(2 - 5) = 4(-3) = -12 \) 3. \( -6(5 - (-2)) = -6(5 + 2) = -6(7) = -42 \) Now, substituting these values back into the area formula: \[ \text{Area} = \frac{1}{2} \left| -16 - 12 - 42 \right| \] ### Step 3: Combine the terms Combining the terms inside the absolute value: \[ -16 - 12 - 42 = -70 \] ### Step 4: Calculate the absolute value Now, taking the absolute value: \[ \left| -70 \right| = 70 \] ### Step 5: Final calculation of the area Finally, calculating the area: \[ \text{Area} = \frac{1}{2} \times 70 = 35 \] Thus, the area of the triangle is \( 35 \) square units. ### Final Answer: The area of the triangle is \( 35 \) square units. ---
Promotional Banner