Home
Class 12
MATHS
Find the cofactors of elements a12,a22,a...

Find the cofactors of elements `a_12,a_22,a_32` respectively of the matrix `[(1,sin theta ,1),(-sin theta ,1, sin theta),(-1, -sin theta ,1)]`:

A

`0,2,-2 sin theta`

B

`2,0, 2 sin theta`

C

`2,0 -2 sin theta`

D

`-2 sin theta ,2,0`

Text Solution

AI Generated Solution

The correct Answer is:
To find the cofactors of the elements \( a_{12}, a_{22}, a_{32} \) of the matrix \[ A = \begin{bmatrix} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1 \end{bmatrix}, \] we will follow the definition of the cofactor, which is given by: \[ C_{ij} = (-1)^{i+j} M_{ij}, \] where \( M_{ij} \) is the minor of the element \( a_{ij} \). ### Step 1: Calculate the cofactor \( C_{12} \) 1. **Identify the element \( a_{12} \)**: This is the element in the first row and second column, which is \( \sin \theta \). 2. **Find the minor \( M_{12} \)**: To find \( M_{12} \), we remove the first row and the second column from the matrix \( A \): \[ M_{12} = \begin{vmatrix} -\sin \theta & \sin \theta \\ -1 & 1 \end{vmatrix} \] 3. **Calculate the determinant**: \[ M_{12} = (-\sin \theta)(1) - (\sin \theta)(-1) = -\sin \theta + \sin \theta = 0. \] 4. **Calculate the cofactor**: \[ C_{12} = (-1)^{1+2} M_{12} = (-1)^{3} \cdot 0 = 0. \] ### Step 2: Calculate the cofactor \( C_{22} \) 1. **Identify the element \( a_{22} \)**: This is the element in the second row and second column, which is \( 1 \). 2. **Find the minor \( M_{22} \)**: To find \( M_{22} \), we remove the second row and the second column from the matrix \( A \): \[ M_{22} = \begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} \] 3. **Calculate the determinant**: \[ M_{22} = (1)(1) - (1)(-1) = 1 + 1 = 2. \] 4. **Calculate the cofactor**: \[ C_{22} = (-1)^{2+2} M_{22} = 1 \cdot 2 = 2. \] ### Step 3: Calculate the cofactor \( C_{32} \) 1. **Identify the element \( a_{32} \)**: This is the element in the third row and second column, which is \( -\sin \theta \). 2. **Find the minor \( M_{32} \)**: To find \( M_{32} \), we remove the third row and the second column from the matrix \( A \): \[ M_{32} = \begin{vmatrix} 1 & 1 \\ -\sin \theta & \sin \theta \end{vmatrix} \] 3. **Calculate the determinant**: \[ M_{32} = (1)(\sin \theta) - (1)(-\sin \theta) = \sin \theta + \sin \theta = 2 \sin \theta. \] 4. **Calculate the cofactor**: \[ C_{32} = (-1)^{3+2} M_{32} = (-1)^{5} \cdot (2 \sin \theta) = -2 \sin \theta. \] ### Final Results Thus, the cofactors are: - \( C_{12} = 0 \) - \( C_{22} = 2 \) - \( C_{32} = -2 \sin \theta \)
Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt((1+sin theta)/(1-sin theta)?)?

let Delta=det[[1,sin theta,1-sin theta,1,sin theta-1,-sin theta,1]],0<=theta<=2 pi

((sin theta+cos theta-1)/(sin theta-cos theta+1))(1+sin theta) =

(1 + sin theta-cos theta) / (1 + sin theta + cos theta) =

cos theta/(1+sin theta)=(1-sin theta)/cos theta

(1)/(1+sin theta ) +(1)/(1-sin theta) = ?

" (1) "|[cos theta,-sin theta],[sin theta,cos theta]|

(1 + sin theta-cos theta) / (1 + sin theta + cos theta)

(sin theta)/(1-cos theta)=(1+cos theta)/(sin theta)

(1)/(1-sin theta)-(1)/(1+sin theta)=(2tan theta)/(cos theta)