Home
Class 12
MATHS
The value of tan^(2)(sec^(-1)2)+cot^(2...

The value of
`tan^(2)(sec^(-1)2)+cot^(2)(cosec^(-1)3)` is

A

11

B

10

C

0

D

5

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : tan^(2) ("sec"^(-1)3) + cot^(2) ("cosec^(-1) 4) .

Statement 1: tan^(2)(sec^(-1)2)+cot^(2)(cosec^(-1)3)=11 . Statement -2 :tan^(2)theta+sec^(2)theta=1=cot^(2)theta+cosec^(2)theta

The value of sec^(2)(tan^(-1)2)+cosec^(2)(cot^(-1)3) is

Evaluate the following : tan^(2) ( sec^(-1) 2) + cot^(2) ( cosec^(-1) 3) .

The value of tan^(2)∅+ cot^(2)∅− sec^(2)∅ cosec^(2)∅ is equal to: tan^(2)∅+ cot^(2)∅− sec^(2)∅ cosec^(2)∅ iका मान बराबर है :

If o^(@)ltAlt90^(@) , then the value of tan^(2)A+cot^(2)A-sec^(2)A"cosec"^(2)A is

sec^(2)(tan^(-1)4)+cosec^(2)(cot^(-1)3) =

The numerical value of sec^(2)(tan^(-1)2) + cosec^(2)(cot^(-1)3) =______.

The value of cot^(-1)(-1)+cosec^(-1)(-sqrt(2))+sec^(-1)(2) is

sec^(2)(tan^(-1)2) +"cosec"^(2)(cot^(-1)3)=