Home
Class 12
MATHS
If y=e^(-x)[-6a sin ax +5b cos bx-6 cos ...

If `y=e^(-x)``[-6a sin ax +5b cos bx-6 cos bx) `then `(dy)/(dx)=`

A

`(dy)/(dx) =e^(-x)[-6a sin ax+5b cos bx -6a cos ax-5 sin bx]`

B

`(dy)/(dx) =e^(-x)[6a sin ax-5b cos bx -6a cos ax-5 sin bx]`

C

`(dy)/(dx) =e^(-x)[-6a sin ax+5b cos bx +6 cos ax+5 sin bx]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) of the function \[ y = e^{-x} \left(-6a \sin(ax) + 5b \cos(bx) - 6 \cos(bx)\right), \] we will use the product rule of differentiation. The product rule states that if you have two functions \( u \) and \( v \), then the derivative is given by: \[ \frac{d(uv)}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}. \] ### Step 1: Identify \( u \) and \( v \) Let: - \( u = e^{-x} \) - \( v = -6a \sin(ax) + 5b \cos(bx) - 6 \cos(bx) \) ### Step 2: Differentiate \( u \) and \( v \) 1. Differentiate \( u \): \[ \frac{du}{dx} = \frac{d}{dx}(e^{-x}) = -e^{-x} \] 2. Differentiate \( v \): \[ \frac{dv}{dx} = \frac{d}{dx}(-6a \sin(ax)) + \frac{d}{dx}(5b \cos(bx)) - \frac{d}{dx}(6 \cos(bx)) \] - For \( -6a \sin(ax) \): \[ \frac{d}{dx}(-6a \sin(ax)) = -6a \cdot a \cos(ax) = -6a^2 \cos(ax) \] - For \( 5b \cos(bx) \): \[ \frac{d}{dx}(5b \cos(bx)) = 5b \cdot (-b \sin(bx)) = -5b^2 \sin(bx) \] - For \( -6 \cos(bx) \): \[ \frac{d}{dx}(-6 \cos(bx)) = -6 \cdot (-b \sin(bx)) = 6b \sin(bx) \] Combining these, we get: \[ \frac{dv}{dx} = -6a^2 \cos(ax) - 5b^2 \sin(bx) + 6b \sin(bx) \] Simplifying: \[ \frac{dv}{dx} = -6a^2 \cos(ax) + (6b - 5b^2) \sin(bx) \] ### Step 3: Apply the Product Rule Now we can apply the product rule: \[ \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \] Substituting \( u \), \( v \), \( \frac{du}{dx} \), and \( \frac{dv}{dx} \): \[ \frac{dy}{dx} = e^{-x} \left(-6a^2 \cos(ax) + (6b - 5b^2) \sin(bx)\right) + \left(-6a \sin(ax) + 5b \cos(bx) - 6 \cos(bx)\right)(-e^{-x}) \] ### Step 4: Simplify the Expression This simplifies to: \[ \frac{dy}{dx} = e^{-x} \left(-6a^2 \cos(ax) + (6b - 5b^2) \sin(bx) + 6a \sin(ax) - 5b \cos(bx) + 6 \cos(bx)\right) \] ### Final Result Thus, the final expression for \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = e^{-x} \left(-6a^2 \cos(ax) + 6a \sin(ax) + (6b - 5b^2) \sin(bx) + (6 - 5b) \cos(bx)\right) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sin x+cos x then (dy)/(dx) =

if sin y+e^(x cos y)=e then (dy)/(dx)

y=logx/(a+bx) then (dy)/(dx)

if y=(sin x)^(cos x). Then (dy)/(dx)=

If y=cos (sin x ),then (dy)/(dx) =

If cos (xy) =sin (x+y) ,then (dy)/(dx)

If y =sin (ax^(2) +bx +c ) then (dy)/(dx) =

y=log(x/(1+bx)) then (dy)/(dx)

If y= sin (cos (tan x)) ,then (dy)/(dx) =