Home
Class 12
MATHS
cosec^(-1)((-2)/(sqrt3))=...

`cosec^(-1)((-2)/(sqrt3))=`

A

`- pi/3`

B

`pi/3`

C

` pi/2`

D

`- pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \csc^{-1}\left(-\frac{2}{\sqrt{3}}\right) \), we can follow these steps: ### Step 1: Understand the relationship between cosecant and cosine The cosecant function is the reciprocal of the sine function. Therefore, we can express the cosecant inverse in terms of sine: \[ \csc^{-1}(x) = \sin^{-1}\left(\frac{1}{x}\right) \] Thus, we have: \[ \csc^{-1}\left(-\frac{2}{\sqrt{3}}\right) = \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) \] ### Step 2: Find the angle whose sine is \(-\frac{\sqrt{3}}{2}\) The sine function is negative in the third and fourth quadrants. The reference angle where \(\sin(\theta) = \frac{\sqrt{3}}{2}\) is \(\frac{\pi}{3}\). Therefore, the angles in the third and fourth quadrants are: \[ \theta = \frac{4\pi}{3} \quad \text{(third quadrant)} \] \[ \theta = -\frac{\pi}{3} \quad \text{(fourth quadrant)} \] ### Step 3: Choose the correct angle Since we are looking for the principal value of \(\sin^{-1}\), we take the angle in the fourth quadrant: \[ \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) = -\frac{\pi}{3} \] ### Step 4: Conclusion Thus, we conclude that: \[ \csc^{-1}\left(-\frac{2}{\sqrt{3}}\right) = -\frac{\pi}{3} \] ### Final Answer \[ \csc^{-1}\left(-\frac{2}{\sqrt{3}}\right) = -\frac{\pi}{3} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the principal values of cosec^(-1)(2) and cosec^(-1)(-(2)/(sqrt(3)))

Consider the following I. "cosec"^(-1)(-(2)/(sqrt(3)))=-(pi)/(3) II. sec^(-1)((2)/(sqrt(3)))=(pi)/(6) Which of the above is/are correct ?

For the principal values,evaluate the following: cot^(-1)(-1)+csc^(-1)(-sqrt(2))+secs^(-1)(2)cot^(-1)(-sqrt(3))+tan^(-1)(1)sec^(-1)((2)/(sqrt(3)))

Evaluate each of the following: cot^(-1)(1)/(sqrt(3))-csc^(-1)(-2)+sec^(-1)((2)/(sqrt(3)))cot^(-1){2cos(sin^(-1)(sqrt(3))/(2))}csc^(-1)(-(2)/(sqrt(3)))+2cot^(-1)(-1)tan^(-1)((1)/(sqrt(3)))+cot^(-1)((1)/(sqrt(3)))+tan^(-1)(sin(-(pi)/(2)))

For the principal values,evaluate the following: sin^(-1)(-(sqrt(3))/(2))+csc^(-1)(-(2)/(sqrt(3)))sec^(-1)(sqrt(2))+2csc^(-1)(-sqrt(2))sin^(-1)[cos{2csc^(-1)(-2)}]csc^(-1)(2tan(11 pi)/(6))

cosec"^(-1)(-sqrt(2))

Find the value of cosec(1020^(@))=cosec(3xx360^(@)-60^(@)) =-cosec60^(@)=-(2)/(sqrt(3))

The vlaue of tan^(-1)sqrt(3)-sec^(-1)(-2)+cosec^(-1)(2)/sqrt(3) is

For the principal values,evaluate each of the following: tan^(-1)sqrt(3)-sec^(-1)(-2)+csc^(-1)(2)/(sqrt(3))2sec^(-1)(2)-2csc^(-1)(-2)

Find the principal values of cosec^(-1)(-sqrt2)