Home
Class 12
MATHS
If A=[(5,-3,2),(-3,8,1)] and B=[(2,3),(5...

If `A=[(5,-3,2),(-3,8,1)]` and `B=[(2,3),(5,6),(2,-3)]` , then find BA.

A

`[(1,18,7),(7,33,16),(19,-30,1)]`

B

`[(-1,-19),(36,30)]`

C

`[(1,7,19),(18,33,1),(7,30,-10)]`

D

`[(36,-36),(19,-1)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the product of matrices \( BA \), we follow the matrix multiplication rules. Let's break it down step by step. ### Step 1: Identify the matrices We have: \[ A = \begin{pmatrix} 5 & -3 & 2 \\ -3 & 8 & 1 \end{pmatrix} \] and \[ B = \begin{pmatrix} 2 & 3 \\ 5 & 6 \\ 2 & -3 \end{pmatrix} \] ### Step 2: Check the dimensions for multiplication Matrix \( B \) is a \( 3 \times 2 \) matrix, and matrix \( A \) is a \( 2 \times 3 \) matrix. The number of columns in \( B \) (2) matches the number of rows in \( A \) (2), so we can multiply them. The resulting matrix \( BA \) will have the dimensions of \( 3 \times 3 \). ### Step 3: Multiply the matrices To find \( BA \), we will compute each element of the resulting \( 3 \times 3 \) matrix. The element in the \( i^{th} \) row and \( j^{th} \) column of \( BA \) is calculated by taking the dot product of the \( i^{th} \) row of \( B \) and the \( j^{th} \) column of \( A \). 1. **First row, first column**: \[ (2)(5) + (3)(-3) = 10 - 9 = 1 \] 2. **First row, second column**: \[ (2)(-3) + (3)(8) = -6 + 24 = 18 \] 3. **First row, third column**: \[ (2)(2) + (3)(1) = 4 + 3 = 7 \] 4. **Second row, first column**: \[ (5)(5) + (6)(-3) = 25 - 18 = 7 \] 5. **Second row, second column**: \[ (5)(-3) + (6)(8) = -15 + 48 = 33 \] 6. **Second row, third column**: \[ (5)(2) + (6)(1) = 10 + 6 = 16 \] 7. **Third row, first column**: \[ (2)(5) + (-3)(-3) = 10 + 9 = 19 \] 8. **Third row, second column**: \[ (2)(-3) + (-3)(8) = -6 - 24 = -30 \] 9. **Third row, third column**: \[ (2)(2) + (-3)(1) = 4 - 3 = 1 \] ### Step 4: Compile the resulting matrix Putting all the computed values together, we have: \[ BA = \begin{pmatrix} 1 & 18 & 7 \\ 7 & 33 & 16 \\ 19 & -30 & 1 \end{pmatrix} \] ### Final Result Thus, the product \( BA \) is: \[ BA = \begin{pmatrix} 1 & 18 & 7 \\ 7 & 33 & 16 \\ 19 & -30 & 1 \end{pmatrix} \]
Promotional Banner