Home
Class 12
MATHS
Find the value of sec^(-1) 2+sin^(-1)(1/...

Find the value of `sec^(-1) 2+sin^(-1)(1/(sqrt2))`

A

`(15pi)/12`

B

`(7pi)/12`

C

`pi/4`

D

`(3pi)/4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sec^{-1}(2) + \sin^{-1}\left(\frac{1}{\sqrt{2}}\right) \), we can break it down into two parts. ### Step 1: Find \( \sec^{-1}(2) \) The secant function is defined as: \[ \sec(\theta) = \frac{1}{\cos(\theta)} \] Thus, if \( \sec(\theta) = 2 \), then: \[ \cos(\theta) = \frac{1}{2} \] The angle \( \theta \) for which \( \cos(\theta) = \frac{1}{2} \) is: \[ \theta = \frac{\pi}{3} \] Therefore, \[ \sec^{-1}(2) = \frac{\pi}{3} \] ### Step 2: Find \( \sin^{-1}\left(\frac{1}{\sqrt{2}}\right) \) The sine function is defined as: \[ \sin(\theta) = \frac{1}{\sqrt{2}} \] The angle \( \theta \) for which \( \sin(\theta) = \frac{1}{\sqrt{2}} \) is: \[ \theta = \frac{\pi}{4} \] Thus, \[ \sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4} \] ### Step 3: Combine the results Now, we can add the two results together: \[ \sec^{-1}(2) + \sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{3} + \frac{\pi}{4} \] ### Step 4: Find a common denominator To add these fractions, we need a common denominator. The least common multiple of 3 and 4 is 12. Thus, we convert: \[ \frac{\pi}{3} = \frac{4\pi}{12} \] \[ \frac{\pi}{4} = \frac{3\pi}{12} \] ### Step 5: Add the fractions Now we can add: \[ \frac{4\pi}{12} + \frac{3\pi}{12} = \frac{7\pi}{12} \] ### Final Answer The value of \( \sec^{-1}(2) + \sin^{-1}\left(\frac{1}{\sqrt{2}}\right) \) is: \[ \frac{7\pi}{12} \] ---
Promotional Banner