Home
Class 12
MATHS
Find the value of |(8,4),(5,6)|....

Find the value of `|(8,4),(5,6)|`.

A

38

B

28

C

10

D

12

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant represented by the matrix \(\begin{pmatrix} 8 & 4 \\ 5 & 6 \end{pmatrix}\), we can use the formula for the determinant of a 2x2 matrix: \[ \text{det} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = AD - BC \] In this case, we have: - \(A = 8\) - \(B = 4\) - \(C = 5\) - \(D = 6\) Now, we can substitute these values into the determinant formula: 1. **Calculate \(AD\)**: \[ AD = 8 \times 6 = 48 \] 2. **Calculate \(BC\)**: \[ BC = 4 \times 5 = 20 \] 3. **Subtract \(BC\) from \(AD\)**: \[ \text{det} = AD - BC = 48 - 20 = 28 \] Thus, the value of the determinant \(|(8,4),(5,6)|\) is \(28\).
Promotional Banner

Similar Questions

Explore conceptually related problems

Find value of |{:(2, 3, 4), (5, 6, 8), (6x, 9x, 12x):}|

Find the value of ( 5/8 ) ( 5/8 )^2

Find the value of x , [ [3, 4],[5, 6]] + [ [2, 1],[x, 1]] = [ [5, 5],[8, 7] ]

" Find the value of (8^(-2)times5^(6))/(2^(-5)times5^(4))

Evaluate : Find the value of ( 7/4 - 8/5 )

Find the value of ( 3/4 )^( 5 + 3 - 8 )

Find the value of: 5^0-6^0+8^0

If |6x-4|=5 , find the value of x.

If 4^(x)=256, then find the value of 6^(2x-8)