Home
Class 12
MATHS
tan^(-1){"sin"(- pi/2)} is equal to :...

`tan^(-1){"sin"(- pi/2)}` is equal to :

A

`-1`

B

1

C

`pi/2`

D

`- pi/4`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

tan[cos ^(-1){sin(2tan^(-1)2)}] is equal to

(3 pi)/(2) The value of int_(0)^((3 pi)/(2))(|tan^(-1)tan x|-|sin^(-1)sin x|)/(|tan^(-1)tan x|+|sin^(-1)sin x|)dx is equal to

The value of (1)/(sqrt(2))"sin"(pi)/(6)"cos"(pi)/(4)-"cot"(pi)/(3)"sec"(pi)/(6)+(5"tan"(pi)/(4))/("12sin"(pi)/(2)) is equal to

If (pi)/(2) lt theta lt (3pi)/(2) then sqrt(tan^(2)theta-sin^(2)theta) is equal to :

sin [(pi)/(3) - sin^(-1) (-(1)/(2))] is equal to :

The value of 2sin^(2)((pi)/(3))-cos^(2)((pi)/(6))+tan^(2)(pi/6) is equal to ....

The value of tan^(-1)(1)+cos^(-1)(-(1)/(2))+sin^(-1)(-(1)/(2)) is equal to (pi)/(4)b*(5 pi)/(12)c*(3 pi)/(4)d.(13 pi)/(12)

sin[pi/2-sin^(-1)(-(1)/(2))] is equal to: