Home
Class 12
MATHS
The second derivative if y =e^(2x^2) is...

The second derivative if `y =e^(2x^2)` is

A

`4e^(2x^2)(4x^2+3)`

B

`4e^(2x^2)(4x^2-1)`

C

`4e^(2x^2)(4x^2+1)`

D

`e^(2x^2)(4x^2+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the second derivative of the function \( y = e^{2x^2} \), we will follow these steps: ### Step 1: Find the first derivative \( \frac{dy}{dx} \) Given \( y = e^{2x^2} \), we will use the chain rule to differentiate. Using the chain rule: \[ \frac{dy}{dx} = \frac{d}{dx} e^{u} \cdot \frac{du}{dx} \] where \( u = 2x^2 \). Now, we differentiate \( e^{u} \): \[ \frac{d}{dx} e^{u} = e^{u} \] Next, we differentiate \( u = 2x^2 \): \[ \frac{du}{dx} = 4x \] Now, substituting back, we get: \[ \frac{dy}{dx} = e^{2x^2} \cdot 4x = 4x e^{2x^2} \] ### Step 2: Find the second derivative \( \frac{d^2y}{dx^2} \) Now we will differentiate \( \frac{dy}{dx} = 4x e^{2x^2} \) again using the product rule: \[ \frac{d^2y}{dx^2} = \frac{d}{dx}(4x) \cdot e^{2x^2} + 4x \cdot \frac{d}{dx}(e^{2x^2}) \] Calculating the first part: \[ \frac{d}{dx}(4x) = 4 \] So, \[ 4 \cdot e^{2x^2} \] Now for the second part, we already found \( \frac{d}{dx}(e^{2x^2}) = 4x e^{2x^2} \): \[ 4x \cdot 4x e^{2x^2} = 16x^2 e^{2x^2} \] Combining both parts: \[ \frac{d^2y}{dx^2} = 4 e^{2x^2} + 16x^2 e^{2x^2} \] Factoring out \( e^{2x^2} \): \[ \frac{d^2y}{dx^2} = e^{2x^2}(4 + 16x^2) \] ### Final Answer: \[ \frac{d^2y}{dx^2} = e^{2x^2}(4 + 16x^2) \] ---
Promotional Banner