Home
Class 12
MATHS
The value of the determinant |(x,x+1),(x...

The value of the determinant `|(x,x+1),(x-1,x)|` is :

A

1

B

`-1`

C

2

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \( |(x, x+1), (x-1, x)| \), we will use the formula for the determinant of a 2x2 matrix. The determinant of a matrix \[ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \] is calculated using the formula: \[ \text{det} = ad - bc \] ### Step-by-Step Solution: 1. **Identify the elements of the matrix**: The given matrix is \[ \begin{pmatrix} x & x+1 \\ x-1 & x \end{pmatrix} \] Here, \( a = x \), \( b = x + 1 \), \( c = x - 1 \), and \( d = x \). 2. **Apply the determinant formula**: Using the formula \( \text{det} = ad - bc \): \[ \text{det} = (x)(x) - (x + 1)(x - 1) \] 3. **Calculate \( ad \)**: \[ ad = x^2 \] 4. **Calculate \( bc \)**: First, expand \( (x + 1)(x - 1) \) using the difference of squares: \[ (x + 1)(x - 1) = x^2 - 1 \] 5. **Substitute back into the determinant formula**: Now substitute \( ad \) and \( bc \) back into the determinant formula: \[ \text{det} = x^2 - (x^2 - 1) \] 6. **Simplify the expression**: \[ \text{det} = x^2 - x^2 + 1 = 1 \] ### Final Answer: The value of the determinant is \( 1 \).
Promotional Banner