Home
Class 12
MATHS
If x = t^(2) and y = t^(3), then (d^(2)y...

If `x = t^(2)` and `y = t^(3)`, then `(d^(2)y)/(dx^(2))` is equal to

A

`3/2`

B

`3/(4t)`

C

`3/(2t)`

D

`3/4`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=t^(2) and y=t^(3)+1 , then (d^(2)y)/(dx^(2)) is

If x=f(t) and y=g(t), then (d^(2)y)/(dx^(2)) is equal to

If x=t^(2) and y=t^(3), find (d^(2)y)/(dx^(2))

let y=t^(10)+1, and x=t^(8)+1, then (d^(2)y)/(dx^(2)) is

If x=t^(3)+t+5 and y=sin t then (d^(2)y)/(dx^(2))

if x=log_(e)t,t>0 and y+1=t^(2) then (d^(2)y)/(dx^(2))

If x=cos(2t)and y=sin^(2)t , then what is (d^(2)y)/(dx^(2)) equal to?

If x= sin t and y= sin^(3)t , then (d^(2)y)/(dx^(2)) at t=pi/2 is