Home
Class 12
MATHS
Differentiate the function y =sec (x^2+2...

Differentiate the function `y =sec (x^2+2)` w.r.t. x is :

A

`2x sec(x^2 +2 ) tan (x^2+2)`

B

`sec(x^2+2) tan (x^2+2)`

C

`2x sec^2 (x^2+2)`

D

`2x tan^2(x^2+2)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \sec(x^2 + 2) \) with respect to \( x \), we will use the chain rule. Here are the steps to find the derivative: ### Step 1: Identify the outer and inner functions The function can be expressed as: - Outer function: \( u = \sec(v) \) - Inner function: \( v = x^2 + 2 \) ### Step 2: Differentiate the outer function The derivative of \( \sec(v) \) with respect to \( v \) is: \[ \frac{du}{dv} = \sec(v) \tan(v) \] ### Step 3: Differentiate the inner function The derivative of \( v = x^2 + 2 \) with respect to \( x \) is: \[ \frac{dv}{dx} = 2x \] ### Step 4: Apply the chain rule Using the chain rule, we have: \[ \frac{dy}{dx} = \frac{du}{dv} \cdot \frac{dv}{dx} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \sec(v) \tan(v) \cdot 2x \] ### Step 5: Substitute back the inner function Now substitute \( v = x^2 + 2 \) back into the equation: \[ \frac{dy}{dx} = \sec(x^2 + 2) \tan(x^2 + 2) \cdot 2x \] ### Final Answer Thus, the derivative of \( y = \sec(x^2 + 2) \) with respect to \( x \) is: \[ \frac{dy}{dx} = 2x \sec(x^2 + 2) \tan(x^2 + 2) \] ---
Promotional Banner