Home
Class 12
MATHS
If y=tan(x+y), then (dy)/(dx) is equal...

If `y=tan(x+y)`, then `(dy)/(dx) ` is equal to :

A

`-"cot"^2(x+y)`

B

`cosec^2(x+y)`

C

cot (x+y)cosec (x+y)

D

`-tan^2 (x+y)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the equation \(y = \tan(x + y)\), we will use implicit differentiation. Here are the steps: ### Step 1: Differentiate both sides with respect to \(x\) We start with the equation: \[ y = \tan(x + y) \] Differentiating both sides with respect to \(x\): \[ \frac{dy}{dx} = \sec^2(x + y) \cdot \left(1 + \frac{dy}{dx}\right) \] ### Step 2: Apply the chain rule On the right side, we applied the chain rule. The derivative of \(\tan(u)\) is \(\sec^2(u) \cdot \frac{du}{dx}\), where \(u = x + y\). Thus: \[ \frac{dy}{dx} = \sec^2(x + y) \cdot (1 + \frac{dy}{dx}) \] ### Step 3: Rearrange the equation Now, we can rearrange the equation to isolate \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \sec^2(x + y) + \sec^2(x + y) \cdot \frac{dy}{dx} \] Bringing all terms involving \(\frac{dy}{dx}\) to one side: \[ \frac{dy}{dx} - \sec^2(x + y) \cdot \frac{dy}{dx} = \sec^2(x + y) \] Factoring out \(\frac{dy}{dx}\): \[ \frac{dy}{dx} (1 - \sec^2(x + y)) = \sec^2(x + y) \] ### Step 4: Solve for \(\frac{dy}{dx}\) Now, we can solve for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{\sec^2(x + y)}{1 - \sec^2(x + y)} \] ### Step 5: Simplify the expression Using the identity \(\sec^2(u) = 1 + \tan^2(u)\), we can rewrite: \[ \frac{dy}{dx} = \frac{1 + \tan^2(x + y)}{1 - (1 + \tan^2(x + y))} \] This simplifies to: \[ \frac{dy}{dx} = \frac{1 + \tan^2(x + y)}{-\tan^2(x + y)} = -\frac{1 + \tan^2(x + y)}{\tan^2(x + y)} \] ### Final Result Thus, the final result for \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = -\frac{1 + y^2}{y^2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=tan^(-1)x ,then (dy)/(dx) is

If y = x tan y , then (dy)/(dx) is equal to

If y^(x) = x^(y) , "then" (dy)/(dx) is equal to

If y = x^sqrt(x) , "then "(dy)/(dx) is equal to

If y = (tan x)^(x) , then (dy)/(dx) =

If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

If y/x=tan^(-1)(x/y) then (dy)/(dx)=

if y=tan(sin^(-1)x) then (dy)/(dx)