Home
Class 12
MATHS
If A^T=[(3,4),(-1,2),(0,1)] and B=[(-1,2...

If `A^T=[(3,4),(-1,2),(0,1)]` and B=`[(-1,2,1),(1,2,3)]`, then find `A^T-B^T`.

A

`[(4,3),(-3,0),(-1,-2)]`

B

`[(4,3),(3,0),(1,2)]`

C

`[(4,0),(-1,-3),(3,-2)]`

D

`[(1,-3),(2,4),(3,5)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding \( A^T - B^T \), we will follow these steps: ### Step 1: Identify the matrices \( A^T \) and \( B \) Given: \[ A^T = \begin{pmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{pmatrix} \] \[ B = \begin{pmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{pmatrix} \] ### Step 2: Find the transpose of matrix \( B \) To find \( B^T \), we will convert rows of \( B \) into columns: \[ B^T = \begin{pmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{pmatrix} \] ### Step 3: Prepare to subtract \( B^T \) from \( A^T \) Now we have: \[ A^T = \begin{pmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{pmatrix} \] \[ B^T = \begin{pmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{pmatrix} \] ### Step 4: Perform the subtraction \( A^T - B^T \) We will subtract corresponding elements of \( B^T \) from \( A^T \): \[ A^T - B^T = \begin{pmatrix} 3 - (-1) & 4 - 1 \\ -1 - 2 & 2 - 2 \\ 0 - 1 & 1 - 3 \end{pmatrix} \] Calculating each element: - First row: - \( 3 - (-1) = 3 + 1 = 4 \) - \( 4 - 1 = 3 \) - Second row: - \( -1 - 2 = -3 \) - \( 2 - 2 = 0 \) - Third row: - \( 0 - 1 = -1 \) - \( 1 - 3 = -2 \) Putting it all together, we get: \[ A^T - B^T = \begin{pmatrix} 4 & 3 \\ -3 & 0 \\ -1 & -2 \end{pmatrix} \] ### Final Result Thus, the result of \( A^T - B^T \) is: \[ \begin{pmatrix} 4 & 3 \\ -3 & 0 \\ -1 & -2 \end{pmatrix} \] ---
Promotional Banner