Home
Class 12
MATHS
Z=20x1+20x2, subject to x1 le 0, x2 le 0...

`Z=20x_1+20x_2`, subject to `x_1 le 0, x_2 le 0, x_1+2x_2 ge 8, 3x_1 +2x_2 ge 15, 5x_1+2x_2 ge 20`.The minimum value of Z occurs at :

A

(8,0)

B

`(5/2 , 15/4)`

C

`(7/2 , 9/4)`

D

(0 , 10)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of minimizing \( Z = 20x_1 + 20x_2 \) subject to the constraints: 1. \( x_1 \leq 0 \) 2. \( x_2 \leq 0 \) 3. \( x_1 + 2x_2 \geq 8 \) 4. \( 3x_1 + 2x_2 \geq 15 \) 5. \( 5x_1 + 2x_2 \geq 20 \) we will follow these steps: ### Step 1: Identify the Constraints We have the following constraints: - \( x_1 \leq 0 \) - \( x_2 \leq 0 \) - \( x_1 + 2x_2 \geq 8 \) - \( 3x_1 + 2x_2 \geq 15 \) - \( 5x_1 + 2x_2 \geq 20 \) ### Step 2: Convert Inequalities to Equations To find the intersection points, we convert the inequalities into equalities: 1. \( x_1 + 2x_2 = 8 \) (Equation 1) 2. \( 3x_1 + 2x_2 = 15 \) (Equation 2) 3. \( 5x_1 + 2x_2 = 20 \) (Equation 3) ### Step 3: Find Intersection Points We will solve pairs of equations to find the points of intersection. #### Intersection of Equation 1 and Equation 2: \[ x_1 + 2x_2 = 8 \quad (1) \] \[ 3x_1 + 2x_2 = 15 \quad (2) \] Subtract (1) from (2): \[ (3x_1 + 2x_2) - (x_1 + 2x_2) = 15 - 8 \] \[ 2x_1 = 7 \implies x_1 = \frac{7}{2} \] Substituting \( x_1 \) back into Equation (1): \[ \frac{7}{2} + 2x_2 = 8 \implies 2x_2 = 8 - \frac{7}{2} = \frac{16}{2} - \frac{7}{2} = \frac{9}{2} \implies x_2 = \frac{9}{4} \] So, one intersection point is \( \left(\frac{7}{2}, \frac{9}{4}\right) \). #### Intersection of Equation 2 and Equation 3: \[ 3x_1 + 2x_2 = 15 \quad (2) \] \[ 5x_1 + 2x_2 = 20 \quad (3) \] Subtract (2) from (3): \[ (5x_1 + 2x_2) - (3x_1 + 2x_2) = 20 - 15 \] \[ 2x_1 = 5 \implies x_1 = \frac{5}{2} \] Substituting \( x_1 \) back into Equation (2): \[ 3\left(\frac{5}{2}\right) + 2x_2 = 15 \implies \frac{15}{2} + 2x_2 = 15 \] \[ 2x_2 = 15 - \frac{15}{2} = \frac{30}{2} - \frac{15}{2} = \frac{15}{2} \implies x_2 = \frac{15}{4} \] So, another intersection point is \( \left(\frac{5}{2}, \frac{15}{4}\right) \). #### Intersection of Equation 1 and Equation 3: \[ x_1 + 2x_2 = 8 \quad (1) \] \[ 5x_1 + 2x_2 = 20 \quad (3) \] Subtract (1) from (3): \[ (5x_1 + 2x_2) - (x_1 + 2x_2) = 20 - 8 \] \[ 4x_1 = 12 \implies x_1 = 3 \] Substituting \( x_1 \) back into Equation (1): \[ 3 + 2x_2 = 8 \implies 2x_2 = 5 \implies x_2 = \frac{5}{2} \] So, the third intersection point is \( (3, \frac{5}{2}) \). ### Step 4: Evaluate the Objective Function at Each Intersection Point Now we will evaluate \( Z = 20x_1 + 20x_2 \) at each intersection point. 1. For \( \left(\frac{7}{2}, \frac{9}{4}\right) \): \[ Z = 20\left(\frac{7}{2}\right) + 20\left(\frac{9}{4}\right) = 70 + 45 = 115 \] 2. For \( \left(\frac{5}{2}, \frac{15}{4}\right) \): \[ Z = 20\left(\frac{5}{2}\right) + 20\left(\frac{15}{4}\right) = 50 + 75 = 125 \] 3. For \( (3, \frac{5}{2}) \): \[ Z = 20(3) + 20\left(\frac{5}{2}\right) = 60 + 50 = 110 \] ### Step 5: Determine the Minimum Value The minimum value of \( Z \) occurs at the point \( (3, \frac{5}{2}) \) with: \[ \text{Minimum } Z = 110 \] ### Final Answer The minimum value of \( Z \) occurs at \( (3, \frac{5}{2}) \).
Promotional Banner

Similar Questions

Explore conceptually related problems

The objective function Z=x_(1)+x_(2), subject to x_(1) +x_(2) le 10 , - 2x _(1) +3x_(2)le 15, x x_(1) le 6,x_(1),x_(2) ge 0 has maximum value ________ of the feasible region .

The objective function Z=4x_(1) +5x_(2) , Subject to 2x_(1) +x_(2) ge 7,2x_(1)+3x_(2) le 15,x_(2)le 3, x_(1),x_(2)ge 0 has minimum value at the point

Maximize z= 5x+2y subject to 3x+5y le 15, 5x+2y le 10, x ge 0, y ge 0

minimize z=20x_(1)+20x_(2), subject to x_(1)>=0,x_(2)>=0,x_(1)+2x_(2)>=8,3x_(1)+2x_(2)>=15,5x_(1)+2x_(2)>=20

3x + 4y le 60, x ge 2y , x ge1 , y ge 0

Maximize z = -x_(1) + 2x_(2) Subject to -x_(1) + x_(2) le 1 -x_(1) + 2x_(2) le 4 x_(1), x_(2) le 0

Maximize z = 3 x _ 1 - x _ 2 , subject to 2x _ 1 + x _ 2 ge 2, x _ 1 + 3 x _ 2 le 2, x _ 2 le 2, x _ 1 ge 0 , x _ 2 ge 0

Minimize z = -x_(1) + 2x_(2) Subject to -x_(1) + 3x_(2) le 10 x_(1) + x_(2) le 6 x_(1) - x_(2) le 2 and x_(1), x_(2) ge 0

Maximize z = 5x_(1) + 3x_(2) Subject to 3x_(1) + 5x_(2) le 15 5x_(1) + 2x_(2) le 10 x_(1), x_(2) ge 0

Minimum of Z=12x+20y subject to x+y ge 7, 5x+2y ge 20, x ge0, y ge0 is