Home
Class 12
MATHS
A linear programming problem is as follo...

A linear programming problem is as follows: Minimize Z= 30x + 50y subject to the constraints,
`3x+5y ge 15`
`2x+3y le 18`
`x ge 0, y ge 0` In the feasible region, the minimum value of Z occurs at

A

a unique point

B

no point

C

infinitely many points

D

two points only

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Maximize Z = 5x + 3y subject to the constraints: 3x + 5y le 15, 5x + 2y le 10, x ge 0, y ge 0

Minimize Z = 3x + 2y subject to the constraints : x + y ge 8, 3x + 5y le 15, x ge 0, y ge 0 .

Maximize : Z = x + y ,subject to the constraints: x - y le -1, -x + y le 0, x ge 0, y ge 0

Minimize Z = 2x + 3y subject to constraints x + y ge 6 , 2x + y ge 7, x + 4y ge 8 , x ge 0 , y ge 0

Minimize z=6x+3y subject to the constraints 4x+y ge 80 , x +5y gt 115, 3x+2y le 150 , x ge 0, y ge 0

Minimize 3x+2y subject to the constraints x+y ge 5 and x+2 y ge 6, x ge0, y ge 0

Maximize z = 5x + 10y subject to constraints x + 2y le 10 , 3x + y le 12 , x ge 0 , y ge 0

Minimise Z=13x-15y subject to the constraints x+y le 7, 2x-3y+6 ge 0, x ge 0, x ge 0, and y ge 0

Minimize Z = -3x + 4y subject ot constraints : x + 2y le 8, 3x + 2y le 12, x ge 0, y ge 0 .