Home
Class 12
MATHS
For an objective function Z = ax + by," ...

For an objective function `Z = ax + by," where "a,b gt 0,` the corner points of the feasible region determined by a set of constraints (linear inequalities) are (0, 20), (10, 10), (30, 30) and (0, 40). The condition on a and b such that the maximum Z occurs at both the points (30, 30) and (0, 40) is:

A

b-3a=0

B

a=3b

C

a+2b=0

D

2a-b=0

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

For an objective function Z = ax + by, where a, bgt0 , the corner points of the feasible region determined by a set of constraints (linear inequalities) are (0, 20). (10, 10), (30, 30) and (0, 40). The condition on a and b such that the maximum z occurs at both the points (30, 30) and (0, 40) is:

The corner points of the feasible region determined by the system of linear constraints are (0, 10), (5, 5) (15, 15), (0, 20). Let Z = px + qy , where p,q gt 0 . Then, the condition on p and q so that the maximum of Z occurs at both the points (15, 15) and (0, 20), is

The corner points of the feasible region determined by the system of linear constraints are (0,10) , (5,5) (25,20),(0,30) Let z = px + qy , where p,qgt0 Condition on p and q so that te maximum of z occurs at both the points (25,20 ) and (0,30) is ………

The corner points of a feasible region determined by a system of linear inequations are (0, 0), (4,0), (5,2), (2, 2) and (0, 1). If the objective function is Z = x + y, then maximum of Z occurs at:

The corner points of a feasible region determined by a system of linear inequalities are (20,40),(50,100),(0,200) and (0,50). If the objective funtion Z=x+2y , then maximum of Z occurs at.

The corneer points of a feasible region, determined by a system of linear inequations, are (0,0),(1,0),(4,3),(2,1) and (0,1). If the objective function is Z = 2x - 3y, then the minimum value of Z is :

Corner poins of the feasible region determned by the system of linear constrainsts are (0,3), (1,1), and (3,0). Let Z=px+qy. Where p, q lt 0 Condition on p and q, so that the minimum of Z occurs at (3,0) and (1,1) is

The corner points of the feasible region determined by a system of linear inequations are (0,0),(4,0),(2,4) and (0,5). If the minimum value of Z=ax+by,a, bgt0 occurs at (2,4) and (0,5) ,then :

the corner points of the feasible region of a system of linear inequalities 3x + 5y le 15, 5x + 2y ge 10, x ge 0, y ge 0 , are:

The corner points of the feasible region of the system of linear inequations x+yge2,x+yle5,x-yge0,x,yge0 are :