Home
Class 10
MATHS
If alpha and beta are the zeroes of the ...

If `alpha` and `beta` are the zeroes of the polynomial `x^2-2sqrt3x+3`, then the value of `alpha+beta-alphabeta:`

A

`4sqrt3-3`

B

`2sqrt3-3`

C

`4sqrt3+3`

D

`2sqrt3+3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \alpha + \beta - \alpha \beta \) where \( \alpha \) and \( \beta \) are the zeroes of the polynomial \( x^2 - 2\sqrt{3}x + 3 \). ### Step-by-Step Solution: 1. **Identify the coefficients of the polynomial**: The polynomial is given as \( x^2 - 2\sqrt{3}x + 3 \). - Here, \( a = 1 \) (coefficient of \( x^2 \)) - \( b = -2\sqrt{3} \) (coefficient of \( x \)) - \( c = 3 \) (constant term) 2. **Calculate the sum of the zeroes \( \alpha + \beta \)**: The formula for the sum of the zeroes of a quadratic polynomial \( ax^2 + bx + c \) is given by: \[ \alpha + \beta = -\frac{b}{a} \] Substituting the values: \[ \alpha + \beta = -\frac{-2\sqrt{3}}{1} = 2\sqrt{3} \] 3. **Calculate the product of the zeroes \( \alpha \beta \)**: The formula for the product of the zeroes is given by: \[ \alpha \beta = \frac{c}{a} \] Substituting the values: \[ \alpha \beta = \frac{3}{1} = 3 \] 4. **Substitute the values into the expression \( \alpha + \beta - \alpha \beta \)**: Now we need to find: \[ \alpha + \beta - \alpha \beta = 2\sqrt{3} - 3 \] 5. **Final result**: Thus, the value of \( \alpha + \beta - \alpha \beta \) is: \[ 2\sqrt{3} - 3 \]
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 3

    OSWAL PUBLICATION|Exercise Section -A|6 Videos
  • SAMPLE PAPER 3

    OSWAL PUBLICATION|Exercise Section B|2 Videos
  • SAMPLE PAPER 2

    OSWAL PUBLICATION|Exercise QUESTION BANK|99 Videos
  • SAMPLE PAPER 4

    OSWAL PUBLICATION|Exercise Section -C|8 Videos

Similar Questions

Explore conceptually related problems

If alphaandbeta are the zeroes of a polynomial x^(2)-4sqrt(3)x+3 ,then find the value of alpha+beta-alphabeta .

If alpha and beta are zeroes of the polynomial 3x^(2)+6x+1 , then find the value of alpha+beta+alpha beta .

If alpah and beta are the zeros of the polynomial 2x^(2)+7x+5 , write the value of alpha+beta+alpha beta .

If alpha and beta are the zeroes of the polynomial 2x^(2)-4x+5 find the value of alpha^(2)+beta^(2)

If alpha and beta are the zeroes of the polynomial p(x)=3x^(2)-14x+15 .find the value of alpha^2+beta^2

If alpha and beta are zeroes of the polynomial 3x^(2)-7x+1 then find the value of (1)/(alpha)+(1)/(beta)

If alpha,beta are the zeros of the polynomial 2y^(2)+7y+5, write the value of alpha+beta+alpha beta

If alpha and beta are zeroes of polynomial p(x) = x^(2) - 5x +6 , then find the value of alpha + beta - 3 alpha beta

If alpha and beta are the zeroes of the polynomial f(x) = 5x^(2) - 7x + 1 , then find the value of ((alpha)/(beta) + (beta)/(alpha)) .