Home
Class 10
MATHS
Express in simplest form: (sintheta)/(sq...

Express in simplest form: `(sintheta)/(sqrt(1-sin^2theta))=`

A

`cottheta`

B

`sqrtsintheta`

C

`sintheta//sqrtcostheta`

D

`tantheta`

Text Solution

AI Generated Solution

The correct Answer is:
To express \(\frac{\sin \theta}{\sqrt{1 - \sin^2 \theta}}\) in its simplest form, follow these steps: ### Step-by-Step Solution: 1. **Identify the expression**: We start with the expression \(\frac{\sin \theta}{\sqrt{1 - \sin^2 \theta}}\). 2. **Use the Pythagorean identity**: Recall the trigonometric identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] From this, we can express \(\cos^2 \theta\) as: \[ \cos^2 \theta = 1 - \sin^2 \theta \] 3. **Substitute in the expression**: Substitute \(\cos^2 \theta\) into the expression: \[ \sqrt{1 - \sin^2 \theta} = \sqrt{\cos^2 \theta} \] Since \(\sqrt{\cos^2 \theta} = |\cos \theta|\), we can write: \[ \frac{\sin \theta}{\sqrt{1 - \sin^2 \theta}} = \frac{\sin \theta}{|\cos \theta|} \] 4. **Consider the sign of \(\cos \theta\)**: If we assume \(\theta\) is in a range where \(\cos \theta\) is positive (for example, \(0 \leq \theta < \frac{\pi}{2}\)), we can simplify further: \[ \frac{\sin \theta}{\cos \theta} = \tan \theta \] 5. **Final answer**: Thus, the simplest form of the expression is: \[ \tan \theta \]
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 6

    OSWAL PUBLICATION|Exercise Section - A |6 Videos
  • SAMPLE PAPER 6

    OSWAL PUBLICATION|Exercise Section - B |5 Videos
  • SAMPLE PAPER 5

    OSWAL PUBLICATION|Exercise Section -C|2 Videos
  • SAMPLE PAPER 7

    OSWAL PUBLICATION|Exercise Section -C|7 Videos

Similar Questions

Explore conceptually related problems

Find the value of (sintheta)/(sqrt(1-sin^(2)theta))

sintheta+sin7theta=sin4theta

Express 1.bar(2) in the simplest form.

tan theta= A) (sqrt(1-sin^(2)theta))/(sin theta) , B) (1)/(sec theta) , C) (sin theta)/(sqrt(1-sin^(2)theta)) D) (1)/(sqrt(1+Cot^(2)theta)

The minimum and maximum values of expression y=cos theta(sin theta+sqrt(sin^(2)theta+sin^(2)alpha))

Show that the expression cos theta(sin theta+sqrt(sin^(2)theta+sin^(2)alpha)) always lies between the values of +-sqrt(1+sin^(2)alpha)

Find the sum of n terms of the series sqrt(1-sin2theta)+(sqrt(1-sin4theta)+sqrt(1-sin6theta)+…

int((sintheta+costheta))/sqrt(sin2theta)"d"theta=

What is the value of k, in the expression, sec^(2)theta(1+sintheta)(1-sintheta)=k