Home
Class 10
MATHS
What is the value of tan30^@ + tan60^@?...

What is the value of `tan30^@ + tan60^@`?

A

`(4sqrt3)/3`

B

`(2sqrt3)/alpha`

C

`(sqrt3)/alpha`

D

`1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan 30^\circ + \tan 60^\circ \), we can follow these steps: ### Step 1: Find \( \tan 30^\circ \) The value of \( \tan 30^\circ \) is known to be: \[ \tan 30^\circ = \frac{1}{\sqrt{3}} \quad \text{(or equivalently, } \frac{\sqrt{3}}{3}\text{)} \] ### Step 2: Find \( \tan 60^\circ \) The value of \( \tan 60^\circ \) is known to be: \[ \tan 60^\circ = \sqrt{3} \] ### Step 3: Add \( \tan 30^\circ \) and \( \tan 60^\circ \) Now, we can add the two values: \[ \tan 30^\circ + \tan 60^\circ = \frac{1}{\sqrt{3}} + \sqrt{3} \] ### Step 4: Find a common denominator To add these fractions, we need a common denominator. The common denominator is \( \sqrt{3} \): \[ \tan 30^\circ + \tan 60^\circ = \frac{1}{\sqrt{3}} + \frac{3}{\sqrt{3}} = \frac{1 + 3}{\sqrt{3}} = \frac{4}{\sqrt{3}} \] ### Step 5: Simplify the result We can simplify \( \frac{4}{\sqrt{3}} \) by rationalizing the denominator: \[ \frac{4}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{4\sqrt{3}}{3} \] ### Final Answer Thus, the value of \( \tan 30^\circ + \tan 60^\circ \) is: \[ \frac{4\sqrt{3}}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 7

    OSWAL PUBLICATION|Exercise Section - A |7 Videos
  • SAMPLE PAPER 7

    OSWAL PUBLICATION|Exercise Section - B|4 Videos
  • SAMPLE PAPER 6

    OSWAL PUBLICATION|Exercise Section -C|7 Videos
  • SAMPLE QUESTION PAPER

    OSWAL PUBLICATION|Exercise Section -C|5 Videos

Similar Questions

Explore conceptually related problems

What is the value of tan 30^(@) ?

What is the value of (2+tan60^(@)) ?

What is the value of (2 - tan60^(@)) ?

What is the value of tan 60^@ and sin 45^@ ?

What is the value of sin30^@+cos 30^@ -tan 45^@ ? sin30^@+cos 30^@ -tan 45^@ का मान क्या होगा ?

Find the value of (tan30^(@)+tan60^(@))/(1-tan30^(@)tan60^(@)) and tan90^(@) , what do you observe ?