Home
Class 10
MATHS
The value of (sqrt5+sqrt2)(sqrt5-sqrt2) ...

The value of `(sqrt5+sqrt2)(sqrt5-sqrt2)` is:

A

10

B

7

C

3

D

`sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\sqrt{5} + \sqrt{2})(\sqrt{5} - \sqrt{2})\), we can use the difference of squares formula, which states that: \[ (A + B)(A - B) = A^2 - B^2 \] ### Step-by-Step Solution: 1. **Identify A and B**: In our case, we can identify: - \(A = \sqrt{5}\) - \(B = \sqrt{2}\) 2. **Apply the difference of squares formula**: Using the formula, we substitute \(A\) and \(B\): \[ (\sqrt{5} + \sqrt{2})(\sqrt{5} - \sqrt{2}) = A^2 - B^2 \] 3. **Calculate \(A^2\) and \(B^2\)**: - Calculate \(A^2\): \[ A^2 = (\sqrt{5})^2 = 5 \] - Calculate \(B^2\): \[ B^2 = (\sqrt{2})^2 = 2 \] 4. **Subtract \(B^2\) from \(A^2\)**: Now we substitute these values back into the formula: \[ A^2 - B^2 = 5 - 2 \] 5. **Final Calculation**: \[ 5 - 2 = 3 \] Thus, the value of \((\sqrt{5} + \sqrt{2})(\sqrt{5} - \sqrt{2})\) is **3**.
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 7

    OSWAL PUBLICATION|Exercise Section - A |7 Videos
  • SAMPLE PAPER 7

    OSWAL PUBLICATION|Exercise Section - B|4 Videos
  • SAMPLE PAPER 6

    OSWAL PUBLICATION|Exercise Section -C|7 Videos
  • SAMPLE QUESTION PAPER

    OSWAL PUBLICATION|Exercise Section -C|5 Videos

Similar Questions

Explore conceptually related problems

(sqrt5+sqrt2)(sqrt3+sqrt2)

6.The value of (sqrt(5)+sqrt(2))(sqrt(5)-sqrt(2)) is:

The value of (sqrt5 + 2)/(sqrt5 - 2) is :

The value of (sqrt(5) - 2)/(sqrt(5) + 2) is :

The value of (sqrt(5)-2)(sqrt(5)-2) is: