Home
Class 12
MATHS
As x ranges over all real values, what i...

As `x` ranges over all real values, what is the minimum of `x^2+(x+1)^2`
(a) `1`
(b) `2`
(c) `1/3`
(d) `1/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

For all real values of x, the minimum value of (1-x+x^(2))/(1+x+x^(2)) is (A) 0 (B) 1 (B) 3 (D) (1)/(3)

Find the value of x if 2^(x-3)=1 (a) 1 (b) 2 (c) 3 (d) 4

For all real values of x, the maximum value of (1-x+x^(2))/(1+x+x^(2)) is :

Let x , y be two variables and x >0, x y=1 , then minimum value of x+y is (a) 1 (b) 2 (c) 2 1/2 (d) 3 1/3

Minimum value of f(x)=2x^(2)-4x+5 is 1 (b) -1(c)11 (d) 3

Minimum value of x^(2)+(1)/(x^(2)+1)-3 is

Minimum value of x^(2)+(1)/(x^(2)+1)-3 is