Home
Class 11
MATHS
|[sin^2theta,cos^2theta],[-cos^2theta,si...

`|[sin^2theta,cos^2theta],[-cos^2theta,sin^2theta]|=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

find value of |A|=|[sin^(2)theta,-cos^(2)theta],[cos^(2)theta,-sin^(2)theta]|

sin^2theta+cos^4theta=cos^2theta+sin^4theta

prove that- sin^2theta/cos^2theta+cos^2theta/sin^2theta=1/ (sin^2thetacos^2theta)-2

If |{:(1+cos^(2)theta,sin^(2)theta,4cos6theta),(cos^(2)theta,1+sin^(2)theta,4cos6theta),(cos^(2)theta,sin^(2)theta,1+4cos6theta):}|=0 , and theta in (0,(pi)/(2)) , then value of theta is

cos theta+sin theta=cos2 theta+sin2 theta

If A=[[sin theta,cos theta-cos theta,sin theta]] then A^(2)=

If f(theta)=|[cos^(2)theta,cos theta sin theta,-sin theta],[cos theta sin theta,sin^(2)theta,cos theta],[sin theta,-cos theta,0]| , then f((pi)/(12))

Prove the following identity: ((1)/(sec^(2)theta-cos^(2)theta)+(1)/(cos ec^(2)theta-sin^(2)theta))sin^(2)theta cos^(2)theta=(1-sin^(2)theta cos^(2)theta)/(2+sin^(2)cos^(2)theta)