Home
Class 12
MATHS
(vecA + vecB)^2 - (vecA - vecB)^2 = 4(ve...

`(vecA + vecB)^2 - (vecA - vecB)^2 = 4(vecA.vecB)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(vecA+2vecB).(2vecA-3vecB) :-

If veca and vecb are unequal unit vectors such that (veca - vecb) xx[ (vecb + veca) xx (2 veca + vecb)] = veca+vecb then angle theta " between " veca and vecb is

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

The formula (veca + vecb)^(2)= (veca)^(2) + (vecb)^(2) + 2veca xx vecb valid for non zero vectors veca and vecb .

Find vecA*vecB if |vecA|= 2, |vecB|= 5, and |vecAxx vecB|=8

Two vectors vecA and vecB are such that vecA+vecB=vecA-vecB . Then

vecb and vecc are non- collinear if veca xx (vecb xx vecc) + (veca .vecb) vecb = ( 4-2x- sin y) vecb + ( x^(2) -1) vecc andd (vec. vecc) veca =veca then

If veca and vecb are any two vectors , then prove that |vecaxxvecb|^(2)=|veca|^(2)|vecb|^(2)-(veca.vecb)^(2)=|{:(veca.veca,veca.vecb),(veca.vecb,vecb.vecb):}| or |vecaxxvecb|^(2)+(veca.vecb)^(2)=|veca|^(2)|vecb|^(2) (This is also known as Lagrange identily)

If veca is parallel to vecb xx vecc, then (veca xx vecb) .(veca xx vecc) is equal to (a) |veca|^(2)(vecb.vecc) (b) |vecb|^(2)(veca .vecc) (c) |vecc|^(2)(veca.vecb) (d) none of these

If [ veca vecbvecc]=2 , then find the value of [(veca+2vecb-vecc) (veca - vecb) (veca - vecb-vecc)]