Home
Class 12
MATHS
If x^(2)<-4 then the value of x is...

If `x^(2)<-4` then the value of `x` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the compounded ratio of: (x^(2)-25): (x^(2) + 3x-10), (x^(2)-4): (x^(2) + 3x + 2) and (x+1): (x^(2) + 2x)

Evaluate lim_(xto2) (x^(2)-x-2)/(x^(2)-2x-sin(x-2)).

If |x^2-2x+2|-|2x^2-5x+2|=|x^2-3x| then the set of values of x is

"Let "f(x)=|{:(cos(x+x^(2)),sin (x+x^(2)),-cos(x+x^(2))),(sin (x-x^(2)),cos (x-x^(2)),sin (x-x^(2))),(sin 2x, 0, sin (2x^(2))):}|. Find the value of f'(0).

"Let "f(x)=|{:(cos(x+x^(2)),sin (x+x^(2)),-cos(x+x^(2))),(sin (x-x^(2)),cos (x-x^(2)),sin (x-x^(2))),(sin 2x, 0, sin (2x^(2))):}|. Find the value of f'(0).

The quadratic equation x^(2) + (a^(2) - 2) x - 2a^(2) and x^(2) - 3x + 2 = 0 have

Evaluate lim_(xtooo) ((x^(2)+x-1)/(3x^(2)+2x+4))^((3x^(2)+x)/(x-2))

The domain of f(x) = (x^(2))/(x^(2) - 3x + 2) is :

Solve : (i) (x^(2)-x)^(2)+5(x^(2)-x)+4=0 (ii) (x^(2)-3x)^(2)-16(x^(2)-3x)-36=0

Simplify the expression 8(x^(2)-x-1) + 5 (2x-2) - 3 (x^(2) +x - 1)