Home
Class 12
MATHS
Show that d/dx(tan^-1(x)+cot^-1(x))=0...

Show that `d/dx(tan^-1(x)+cot^-1(x))=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement I int 2^(tan^(-1)x)d(cot^(-1)x)=(2^(tan^(-1)x))/(ln 2)+C Statement II (d)/(dx) (a^(x)+C)=a^(x) ln a

Differentiate tan^(-1)(( sqrt(1+x^(2))-1)/(x))

Differentiate tan^(-1) ((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1) ((x)/(sqrt(1-x^(2)))) .

int _( 0) ^(sqrt3) ((1)/(2) (d)/(dx)(tan ^(-1) ""(2x)/(1- x^(2))))dx equals to:

Differentiate the following functions with respect to x tan^(-1)((a+x)/(1-a x))

Differentiate w.r.t x tan^-1((2x)/(1+15x^2))

Differentiate tan^(-1)'(sqrt(1+x^(2))-1)/(x) w.r.t. tan^(-1)x , when x ne 0 .

Differentiate tan^(-1)((2a^x)/(1-a^(2x))), agt1,-ooltxlt0 with respect to x

Differentiate tan^(-1){ (sinx) / (1+cosx) } with respect to x

Differentiate tan^(-1)((x)/(sqrt(1-x^(2)))) with respect to cos^(-1)(2x^(2)-1) .