Home
Class 9
MATHS
3+1/(sqrt4 + sqrt5) + 1/(sqrt5 +sqrt6).....

`3+1/(sqrt4 + sqrt5) + 1/(sqrt5 +sqrt6)....+1/(sqrt8 + sqrt9)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

1/(sqrt3 + sqrt2) + 1/(sqrt3 -sqrt2)=

Simplify: 1/(sqrt5 + sqrt4) + 1/(sqrt4 + sqrt3) + 1/(sqrt3 + sqrt2) + 1/(sqrt2 + sqrt1)

Rationalize the denominator 1/(sqrt 3 - sqrt 2) - 2/(sqrt 5 - sqrt 3) + 3/(sqrt 5 - sqrt 2)

solve (3sqrt5 +sqrt3)/(sqrt5 -sqrt3)

किसी घनात्मक पूर्णांक n के लिए यदि, (1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6)) +(1)/(sqrt(6)+sqrt(7)) +..... + (1)/(sqrt(n)+sqrt(n+1))=5 है तो n का मान क्या होगा?

Simplify : (\sqrt 5 - \sqrt 3)/(\sqrt 3 + \sqrt 5) \times (\sqrt 5 - \sqrt 3)/(\sqrt 3 -\sqrt 5)

(sqrt5 - sqrt3)/(sqrt5 + sqrt3) is equal to :

Prove that: 1/(1+sqrt(2))+1/(sqrt(2)+sqrt(3))+1/(sqrt(3)+\ sqrt(4))+1/(sqrt(4)+sqrt(5))+1/(sqrt(5)+sqrt(6))+1/(sqrt(6)+sqrt(7))+\ 1/(sqrt(7)+sqrt(8))+1/(sqrt(8)+sqrt(9))=2

Sum of 1/(sqrt(2)+sqrt(5))+1/(sqrt(5)+sqrt(8))+1/(sqrt(8)+sqrt(11))+1/(sqrt(11)+sqrt(14))+..to n terms= (A) n/(sqrt(3n+2)-sqrt(2)) (B) 1/3 (sqrt(2)-sqrt(3n+2) (C) n/(sqrt(3n+2)+sqrt(2)) (D) none of these

If x= ( sqrt5- sqrt3)/ ( sqrt5+ sqrt3) and y= ( sqrt5+ sqrt3)/( sqrt5- sqrt3) find the value of x^(2) + y ^(2)