Home
Class 12
MATHS
dy/dx=sin(x+y)/cos(x+y)...

`dy/dx=sin(x+y)/cos(x+y)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose cos^(2)y.(dy)/(dx)=sin(x+y)+sin(x-y), |x| le (pi)/(2) and |y|le(pi)/(2). If y((pi)/(3))=-(pi)/(2), then y((pi)/(2)) is

(dy)/(dx)=(x+sin x)/(y+cos y)

The solution of dy/dx=cos(x+y)+sin(x+y) , is given by

If sin(x y)+cos(x y)=0 , then (dy)/(dx) is

If 3sin(x y)+4cos(x y)=5 then dy/dx=

If 3sin(x y)+4cos(x y)=5 , then (dy)/(dx)= (a) y/x (b) (3sin(x y)+4cos(x y))/(3cos(x y)-4sin(x y)) (c) (3cos(x y)+4sin(x y))/(4cos(x y)-3sin(x y)) (d) none

Find the particular solution of the differential equation. (dy)/(dx) = ((x sin((x)/(y))-y cos ((x)/(y)))y)/((y cos ((x)/(y))+x sin ((x)/(y)))x) , given that y = 1 when x = (pi)/(4)

Solve (dy)/(dx)=cos(x+y)-sin(x+y) .

(dy)/(dx)tany=sin(x+y)+sin(x-y)

Solve the following differential equations: y/x cos(y/x)dx-{x/ysin(y/x)+cos(y/x)}dy=0