Home
Class 11
MATHS
A normal to the parabola y^(2)=4ax with ...

A normal to the parabola `y^(2)=4ax` with slope m touches the rectangular hyperbola `x^(2)-y^(2)=a^(2)`, if
A) `m^(6)+4m^(4)-3m^(2)+1=0`
B) `m^(6)-4m^(4)+3m^(2)-1=0`
C) `m^(6)-4m^(4)-3m^(2)+1=0`
D) none

Promotional Banner

Similar Questions

Explore conceptually related problems

If a normal of slope m to the parabola y^2 = 4 a x touches the hyperbola x^2 - y^2 = a^2 , then

The condition that a straight line with slope m will be normal to parabola y^(2)=4ax as well as a tangent to rectangular hyperbola x^(2)-y^(2)=a^(2) is

Prove that the line x/l+y/m=1 touches the parabola y^2=4a(x+b) , if m^2(l+b)+al^2=0 .

If the line l x+m y+n=0 touches the parabola y^2=4a x , prove that ln=a m^2

If the line l x+m y+n=0 touches the parabola y^2=4a x , prove that ln=a m^2

The line y=mx+1 is a tangent to the parabola y^2 = 4x if (A) m=1 (B) m=2 (C) m=4 (D) m=3

Find the slope of the normal to the curve y^(2)=4 ax at ((a)/(m^(2)),(2a)/(m))

If y=m x+c touches the parabola y^2=4a(x+a), then (a) c=a/m (b) c=a m+a/m (c) c=a+a/m (d) none of these

If y=m x+c touches the parabola y^2=4a(x+a), then (a) c=a/m (b) c=a m+a/m c=a+a/m (d) none of these

Prove that the line y=m(x-1)+3sqrt(1+m^(2))-2 touches the circle x^(2)+y^(2)-2x+4y-4=0 for all real values of m.