Home
Class 12
MATHS
int 1/(1+x^2) e^(tan^-1x) dx...

`int 1/(1+x^2) e^(tan^-1x) dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int 1/((1+x^2)tan^(-1)x)dx

int((1+x+x^(2))/( 1+x^(2))) e^(tan^(-1)x) dx is equal to

int (tan^(-1)x)dx

int (1-tan^2x)/(1+tan^2x) dx

(i) int(1)/((1+x^(2))tan ^(-1) x )dx " "(ii) int(e^(tan^(-1)x))/(1+x^(2))dx

int(1)/((1+x^(2))sqrt(tan^(-1)x))dx=?

Solve: int_(-1)^(1)x tan^(-1)x dx

Statement I int((1)/(1+x^(4)))dx=tan^(-1)(x^(2))+C Statement II int(1)/(1+x^(2))dx=tan^(-1)x +C

int e^(tan^(-1)x)(1+x+x^2)d(cot^(-1)x) is equal to (a) -e^(tan^(-1)x)+c (b) e^(tan^(-1)x)+c (c) -xe^(tan^(-1)x)+c (d) xe^(tan^(-1)x)+c

Evaluate: int(tanxsec^2x)/(1-tan^2x)dx