Home
Class 12
MATHS
Evaluate : lim( x -> 0 ) ( sqrt( 1 + ...

Evaluate :
`lim_( x -> 0 ) ( sqrt( 1 + x ) - 1 - x/2)/x^2`

( 1 ) `1/8`
( 2 )` -1/8`
( 3 ) `1/3`
( 4 ) `-1/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : lim_( x -> 0 )( sqrt( 3 -x ) -1 )/ ( 2-x )

Evaluate : lim_( x -> 1) (( sqrt( 3 + x ) - sqrt( 5 - x )) / ( x^2 -1 ))

Evaluate lim_(x to 2) (sqrt(3 - x) - 1)/(2 - x)

Evaluate : lim_( x -> 1 ) ( ( 3 - sqrt( x^2 + 8 ) ) ) / (( sqrt( x^2 + 3 ) -2 )

Evaluate lim_(x to 0) (sqrt(1+x^(3))-sqrt(1-x^(3)))/(x^(2))

lim_(x-> -1) (sqrt(x^2+8)-3)/(x+1)

lim_(x to 0) (sqrt(1 + 3x) + sqrt(1 - 3x))/(1 + 3x) is equal to

Evaluate: lim_(xrarr1) ((2x-3)(sqrt(x)-1))/(2x^(2)+x-3)

Evaluate lim_(x to 1) (x^3-1)/(x^2-1)

Evaluate the limit: lim_(x rarr1)((2x-3)(sqrt(x)-1))/(2x^(2))