Home
Class 11
MATHS
If log(10^(x^2) ) + log( 10^((y)^(1/2 ) ...

If `log_(10^(x^2) ) + log_( 10^((y)^(1/2 ) ) )` = 1 , then find the relation of x and y

Promotional Banner

Similar Questions

Explore conceptually related problems

log_(10)^(2) x + log_(10) x^(2) = log_(10)^(2) 2 - 1

If log_(10)x^(2) -log_(10)sqrt(y) =1 , find the value of y, when x=2

If 3 log_(10) (x^(2) y) = 4 + 2 log_(10) x - log_(10) y , where x and y are both + ve, and x - y = 2 sqrt(6) , then the value of x is

If log_(10)2 = x and log_(10)3 = y , then find log_(10)21.6.

If log_(y)x=8" and "log_(10y)16x=4 , then find the value of y.

If "log"_(10) x =y, " then log"_(10^(3))x^(2) equals

If log_(10) x+log_(10) y= 3 and log_(10) x-log_(10) y=1, then x and y are respectively a. 10 and 100 b. 100 and 10 c. 1000 and 100 d. 100 and 1000

If log_(10)(x^(3)+y^(3))-log_(10)(x^(2)+y^(2)-xy) =0,y>=0 is

(log_(10)x)^(2)+log_(10)x^(2)=(log_(10)2)^(2)-1

If x + log_(10) ( 1 + 2^(x)) = x log_(10) 5 + log_(10)6, then the value of x is