Home
Class 11
MATHS
Find x : ( log10^x )^2 - log10^( x^3 ...

Find x :
`( log_10^x )^2 - log_10^( x^3 ) + 2` = 0

Promotional Banner

Similar Questions

Explore conceptually related problems

Find 'x' satisfying the equation 4^(log_(10) x + 1) - 6^(log_(10)x) - 2.3 ^(log_(10)x^(2) + 2) = 0 .

Solve (x^(log_(10)3))^(2) - (3^(log_(10)x)) - 2 = 0 .

log_(10)^(2) x + log_(10) x^(2) = log_(10)^(2) 2 - 1

Solution set of the in equality log_(10^(2)) x-3(log_(10)x)( log_(10)(x-2))+2 log_(10^(2))(x-2) lt 0 , is :

Given that log_10 2 =x, log_10 3 =y then log_10 1.2=

The equation (log_(x) 10)^(3) -(log_(x) 10)^(2) - 6 log_(x) 10 = 0 is satisfied by a value of x given by

If log_(10) 2, log_(10)(2^(x) -1) , log_(10)(2^(x)+3) are in AP, then what is x equal to?

Solve the following equations for x and y: log_10x+log_10(x)^(1/2)+log_10(x)^(1/4)+….=y (1+3+5+…+(2y-1))/(4+7+10+..+(3y+1))=20/(7log_10x)

What is the solution of the equation x log _(10) ((10)/(3)) + log _(10) 3 = log _(10) (2 + 3 ^(x)) + x ?