Home
Class 10
MATHS
Show that : If A, B , C are the angles...

Show that :
If A, B , C are the angles of triangle `Sin( ( A + B )/2 ) + Sin( C/2 ) = Cos(( A + B )/2) + Cos( C/2 )`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A,B and C are interior angles of a triangle ABC, then show that sin((B+C)/(2))=cos(A)/(2)

if A, B and C are interior angles of a triangle ABC, then show that cos((B+C)/2) = sin (A/2)

If A,B,C are angles of a triangle, prove that sin((B+C)/2)="cos"A/2

If A,B, C are the angles of a triangle ABC then (cos A+i sin A)(cos B+i sin B)(cos C+i sin C)

If A,B,C are the angles of a triangle then prove that cos A+cos B-cos C=-1+4cos((A)/(2))cos((B)/(2))sin((C)/(2))

If A,B,C are the interior angles of a triangle ABC, prove that tan((C+A)/(2))=(cot B)/(2)( ii) sin((B+C)/(2))=(cos A)/(2)

If A,B,C are angles of a triangle,then 2sin((A)/(2))cos ec((B)/(2))sin((C)/(2))-sin A cot((B)/(2))-cos A is (a)independent of A,B,C (b) function of A,B(c) function of C(d) none of these